ﻻ يوجد ملخص باللغة العربية
We theoretically propose and experimentally demonstrate a nonclassicality test of single-mode field in phase space, which has an analogy with the nonlocality test proposed by Banaszek and Wodkiewicz [Phys. Rev. Lett. 82, 2009 (1999)]. Our approach to deriving the classical bound draws on the fact that the Wigner function of a coherent state is a product of two independent distributions as if the orthogonal quadratures (position and momentum) in phase space behave as local realistic variables. Our method detects every pure nonclassical Gaussian state, which can also be extended to mixed states. Furthermore, it sets a bound for all Gaussian states and their mixtures, thereby providing a criterion to detect a genuine quantum non-Gaussian state. Remarkably, our phase-space approach with invariance under Gaussian unitary operations leads to an optimized test for a given non-Gaussian state. We experimentally show how this enhanced method can manifest quantum non-Gaussianity of a state by simply choosing phase-space points appropriately, which is essentially equivalent to implementing a squeezing operation on a given state.
Continuous variable entanglement is a manifestation of nonclassicality of quantum states. In this paper we attempt to analyze whether and under which conditions nonclassicality can be used as an entanglement criterion. We adopt the well-accepted defi
We propose a hierachy of nonclassicality criteria in phase space. Our formalism covers the negativity in phase space as a special case and further adresses nonclassicality for quantum states with positive phase-space distributions. Remarkably, it ena
We address truncated states of continuous variable systems and analyze their statistical properties numerically by generating random states in finite-dimensional Hilbert spaces. In particular, we focus to the distribution of purity and non-Gaussianit
An open challenge in physics is to expand the frontiers of the validity of quantum mechanics by evidencing nonclassicality of the centre of mass state of a macroscopic object. Yet another equally important task is to evidence the essential nonclassic
We perform a phase-space analysis of strong-field enhanced ionisation in molecules, with emphasis on quantum-interference effects. Using Wigner quasi-probability distributions and the quantum Liouville equation, we show that the momentum gates report