ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Evaluation of Machine Translation for Terminology Consistency

142   0   0.0 ( 0 )
 نشر من قبل Antonios Anastasopoulos
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

As neural machine translation (NMT) systems become an important part of professional translator pipelines, a growing body of work focuses on combining NMT with terminologies. In many scenarios and particularly in cases of domain adaptation, one expects the MT output to adhere to the constraints provided by a terminology. In this work, we propose metrics to measure the consistency of MT output with regards to a domain terminology. We perform studies on the COVID-19 domain over 5 languages, also performing terminology-targeted human evaluation. We open-source the code for computing all proposed metrics: https://github.com/mahfuzibnalam/terminology_evaluation



قيم البحث

اقرأ أيضاً

We present a new approach to encourage neural machine translation to satisfy lexical constraints. Our method acts at the training step and thereby avoiding the introduction of any extra computational overhead at inference step. The proposed method co mbines three main ingredients. The first one consists in augmenting the training data to specify the constraints. Intuitively, this encourages the model to learn a copy behavior when it encounters constraint terms. Compared to previous work, we use a simplified augmentation strategy without source factors. The second ingredient is constraint token masking, which makes it even easier for the model to learn the copy behavior and generalize better. The third one, is a modification of the standard cross entropy loss to bias the model towards assigning high probabilities to constraint words. Empirical results show that our method improves upon related baselines in terms of both BLEU score and the percentage of generated constraint terms.
The evaluation of neural machine translation systems is usually built upon generated translation of a certain decoding method (e.g., beam search) with evaluation metrics over the generated translation (e.g., BLEU). However, this evaluation framework suffers from high search errors brought by heuristic search algorithms and is limited by its nature of evaluation over one best candidate. In this paper, we propose a novel evaluation protocol, which not only avoids the effect of search errors but provides a system-level evaluation in the perspective of model ranking. In particular, our method is based on our newly proposed exact top-$k$ decoding instead of beam search. Our approach evaluates model errors by the distance between the candidate spaces scored by the references and the model respectively. Extensive experiments on WMT14 English-German demonstrate that bad ranking ability is connected to the well-known beam search curse, and state-of-the-art Transformer models are facing serious ranking errors. By evaluating various model architectures and techniques, we provide several interesting findings. Finally, to effectively approximate the exact search algorithm with same time cost as original beam search, we present a minimum heap augmented beam search algorithm.
The high-quality translation results produced by machine translation (MT) systems still pose a huge challenge for automatic evaluation. Current MT evaluation pays the same attention to each sentence component, while the questions of real-world examin ations (e.g., university examinations) have different difficulties and weightings. In this paper, we propose a novel difficulty-aware MT evaluation metric, expanding the evaluation dimension by taking translation difficulty into consideration. A translation that fails to be predicted by most MT systems will be treated as a difficult one and assigned a large weight in the final score function, and conversely. Experimental results on the WMT19 English-German Metrics shared tasks show that our proposed method outperforms commonly used MT metrics in terms of human correlation. In particular, our proposed method performs well even when all the MT systems are very competitive, which is when most existing metrics fail to distinguish between them. The source code is freely available at https://github.com/NLP2CT/Difficulty-Aware-MT-Evaluation.
Several neural-based metrics have been recently proposed to evaluate machine translation quality. However, all of them resort to point estimates, which provide limited information at segment level. This is made worse as they are trained on noisy, bia sed and scarce human judgements, often resulting in unreliable quality predictions. In this paper, we introduce uncertainty-aware MT evaluation and analyze the trustworthiness of the predicted quality. We combine the COMET framework with two uncertainty estimation methods, Monte Carlo dropout and deep ensembles, to obtain quality scores along with confidence intervals. We compare the performance of our uncertainty-aware MT evaluation methods across multiple language pairs from the QT21 dataset and the WMT20 metrics task, augmented with MQM annotations. We experiment with varying numbers of references and further discuss the usefulness of uncertainty-aware quality estimation (without references) to flag possibly critical translation mistakes.
Reference-free evaluation has the potential to make machine translation evaluation substantially more scalable, allowing us to pivot easily to new languages or domains. It has been recently shown that the probabilities given by a large, multilingual model can achieve state of the art results when used as a reference-free metric. We experiment with various modifications to this model and demonstrate that by scaling it up we can match the performance of BLEU. We analyze various potential weaknesses of the approach and find that it is surprisingly robust and likely to offer reasonable performance across a broad spectrum of domains and different system qualities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا