ﻻ يوجد ملخص باللغة العربية
We show that quantum algorithms of time $T$ and space $Sge log T$ with unitary operations and intermediate measurements can be simulated by quantum algorithms of time $T cdot mathrm{poly} (S)$ and space $ {O}(Scdot log T)$ with unitary operations and without intermediate measurements. The best results prior to this work required either $Omega(T)$ space (by the deferred measurement principle) or $mathrm{poly}(2^S)$ time [FR21,GRZ21]. Our result is thus a time-efficient and space-efficient simulation of algorithms with unitary operations and intermediate measurements by algorithms with unitary operations and without intermediate measurements. To prove our result, we study pseudorandom generators for quantum space-bounded algorithms. We show that (an instance of) the INW pseudorandom generator for classical space-bounded algorithms [INW94] also fools quantum space-bounded algorithms. More precisely, we show that for quantum space-bounded algorithms that have access to a read-once tape consisting of random bits, the final state of the algorithm when the random bits are drawn from the uniform distribution is nearly identical to the final state when the random bits are drawn using the INW pseudorandom generator. This result applies to general quantum algorithms which can apply unitary operations, perform intermediate measurements and reset qubits.
Linear pseudorandom number generators are very popular due to their high speed, to the ease with which generators with a sizable state space can be created, and to their provable theoretical properties. However, they suffer from linear artifacts whic
The information geometry of the 2-manifold of gamma probability density functions provides a framework in which pseudorandom number generators may be evaluated using a neighbourhood of the curve of exponential density functions. The process is illust
Halfspaces or linear threshold functions are widely studied in complexity theory, learning theory and algorithm design. In this work we study the natural problem of constructing pseudorandom generators (PRGs) for halfspaces over the sphere, aka spher
We construct pseudorandom generators of seed length $tilde{O}(log(n)cdot log(1/epsilon))$ that $epsilon$-fool ordered read-once branching programs (ROBPs) of width $3$ and length $n$. For unordered ROBPs, we construct pseudorandom generators with see
We prove new results on the polarizing random walk framework introduced in recent works of Chattopadhyay {et al.} [CHHL19,CHLT19] that exploit $L_1$ Fourier tail bounds for classes of Boolean functions to construct pseudorandom generators (PRGs). We