ﻻ يوجد ملخص باللغة العربية
Linear pseudorandom number generators are very popular due to their high speed, to the ease with which generators with a sizable state space can be created, and to their provable theoretical properties. However, they suffer from linear artifacts which show as failures in linearity-related statistical tests such as the binary-rank and the linear-complexity test. In this paper, we give three new contributions. First, we introduce two new linear transformations that have been handcrafted to have good statistical properties and at the same time to be programmable very efficiently on superscalar processors, or even directly in hardware. Then, we describe a new test for Hamming-weight dependencies that is able to discover subtle, previously unknown biases in existing generators (in particular, in linear ones). Finally, we describe a number of scramblers, that is, nonlinear functions applied to the state array that reduce or delete the linear artifacts, and propose combinations of linear transformations and scramblers that give extremely fast pseudorandom generators of high quality. A novelty in our approach is that we use ideas from the theory of filtered linear-feedback shift register to prove some properties of our scramblers, rather than relying purely on heuristics. In the end, we provide simple, extremely fast generators that use a few hundred bits of memory, have provable properties and pass very strong statistical tests.
Marsaglia proposed recently xorshift generators as a class of very fast, good-quality pseudorandom number generators. Subsequent analysis by Panneton and LEcuyer has lowered the expectations raised by Marsaglias paper, showing several weaknesses of s
xorshift* generators are a variant of Marsaglias xorshift generators that eliminate linear artifacts typical of generators based on $mathbf Z/2mathbf Z$-linear operations using multiplication by a suitable constant. Shortly after high-dimensional xor
Congruential pseudorandom number generators rely on good multipliers, that is, integers that have good performance with respect to the spectral test. We provide lists of multipliers with a good lattice structure up to dimension eight and up to lag ei
The information geometry of the 2-manifold of gamma probability density functions provides a framework in which pseudorandom number generators may be evaluated using a neighbourhood of the curve of exponential density functions. The process is illust
We show that quantum algorithms of time $T$ and space $Sge log T$ with unitary operations and intermediate measurements can be simulated by quantum algorithms of time $T cdot mathrm{poly} (S)$ and space $ {O}(Scdot log T)$ with unitary operations and