ﻻ يوجد ملخص باللغة العربية
Fine-grained visual classification (FGVC) aims to classify sub-classes of objects in the same super-class (e.g., species of birds, models of cars). For the FGVC tasks, the essential solution is to find discriminative subtle information of the target from local regions. TraditionalFGVC models preferred to use the refined features,i.e., high-level semantic information for recognition and rarely use low-level in-formation. However, it turns out that low-level information which contains rich detail information also has effect on improving performance. Therefore, in this paper, we propose cross-layer navigation convolutional neural network for feature fusion. First, the feature maps extracted by the backbone network are fed into a convolutional long short-term memory model sequentially from high-level to low-level to perform feature aggregation. Then, attention mechanisms are used after feature fusion to extract spatial and channel information while linking the high-level semantic information and the low-level texture features, which can better locate the discriminative regions for the FGVC. In the experiments, three commonly used FGVC datasets, including CUB-200-2011, Stanford-Cars, andFGVC-Aircraft datasets, are used for evaluation and we demonstrate the superiority of the proposed method by comparing it with other referred FGVC methods to show that this method achieves superior results.
Classifying the sub-categories of an object from the same super-category (e.g. bird species, car and aircraft models) in fine-grained visual classification (FGVC) highly relies on discriminative feature representation and accurate region localization
Fine-grained visual classification aims to recognize images belonging to multiple sub-categories within a same category. It is a challenging task due to the inherently subtle variations among highly-confused categories. Most existing methods only tak
Fine-grained visual categorization (FGVC) is an important but challenging task due to high intra-class variances and low inter-class variances caused by deformation, occlusion, illumination, etc. An attention convolutional binary neural tree architec
For fine-grained visual classification, objects usually share similar geometric structure but present variant local appearance and different pose. Therefore, localizing and extracting discriminative local features play a crucial role in accurate cate
Fine-Grained Visual Classification (FGVC) datasets contain small sample sizes, along with significant intra-class variation and inter-class similarity. While prior work has addressed intra-class variation using localization and segmentation technique