ترغب بنشر مسار تعليمي؟ اضغط هنا

Weakly Supervised Attention Pyramid Convolutional Neural Network for Fine-Grained Visual Classification

339   0   0.0 ( 0 )
 نشر من قبل YiFeng Ding
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Classifying the sub-categories of an object from the same super-category (e.g. bird species, car and aircraft models) in fine-grained visual classification (FGVC) highly relies on discriminative feature representation and accurate region localization. Existing approaches mainly focus on distilling information from high-level features. In this paper, however, we show that by integrating low-level information (e.g. color, edge junctions, texture patterns), performance can be improved with enhanced feature representation and accurately located discriminative regions. Our solution, named Attention Pyramid Convolutional Neural Network (AP-CNN), consists of a) a pyramidal hierarchy structure with a top-down feature pathway and a bottom-up attention pathway, and hence learns both high-level semantic and low-level detailed feature representation, and b) an ROI guided refinement strategy with ROI guided dropblock and ROI guided zoom-in, which refines features with discriminative local regions enhanced and background noises eliminated. The proposed AP-CNN can be trained end-to-end, without the need of additional bounding box/part annotations. Extensive experiments on three commonly used FGVC datasets (CUB-200-2011, Stanford Cars, and FGVC-Aircraft) demonstrate that our approach can achieve state-of-the-art performance. Code available at url{http://dwz1.cc/ci8so8a}



قيم البحث

اقرأ أيضاً

156 - Tao Hu , Jizheng Xu , Cong Huang 2018
For fine-grained visual classification, objects usually share similar geometric structure but present variant local appearance and different pose. Therefore, localizing and extracting discriminative local features play a crucial role in accurate cate gory prediction. Existing works either pay attention to limited object parts or train isolated networks for locating and classification. In this paper, we propose Weakly Supervised Bilinear Attention Network (WS-BAN) to solve these issues. It jointly generates a set of attention maps (region-of-interest maps) to indicate the locations of objects parts and extracts sequential part features by Bilinear Attention Pooling (BAP). Besides, we propose attention regularization and attention dropout to weakly supervise the generating process of attention maps. WS-BAN can be trained end-to-end and achieves the state-of-the-art performance on multiple fine-grained classification datasets, including CUB-200-2011, Stanford Car and FGVC-Aircraft, which demonstrated its effectiveness.
Fine-grained visual classification (FGVC) aims to classify sub-classes of objects in the same super-class (e.g., species of birds, models of cars). For the FGVC tasks, the essential solution is to find discriminative subtle information of the target from local regions. TraditionalFGVC models preferred to use the refined features,i.e., high-level semantic information for recognition and rarely use low-level in-formation. However, it turns out that low-level information which contains rich detail information also has effect on improving performance. Therefore, in this paper, we propose cross-layer navigation convolutional neural network for feature fusion. First, the feature maps extracted by the backbone network are fed into a convolutional long short-term memory model sequentially from high-level to low-level to perform feature aggregation. Then, attention mechanisms are used after feature fusion to extract spatial and channel information while linking the high-level semantic information and the low-level texture features, which can better locate the discriminative regions for the FGVC. In the experiments, three commonly used FGVC datasets, including CUB-200-2011, Stanford-Cars, andFGVC-Aircraft datasets, are used for evaluation and we demonstrate the superiority of the proposed method by comparing it with other referred FGVC methods to show that this method achieves superior results.
Fine-grained visual classification aims to recognize images belonging to multiple sub-categories within a same category. It is a challenging task due to the inherently subtle variations among highly-confused categories. Most existing methods only tak e an individual image as input, which may limit the ability of models to recognize contrastive clues from different images. In this paper, we propose an effective method called progressive co-attention network (PCA-Net) to tackle this problem. Specifically, we calculate the channel-wise similarity by encouraging interaction between the feature channels within same-category image pairs to capture the common discriminative features. Considering that complementary information is also crucial for recognition, we erase the prominent areas enhanced by the channel interaction to force the network to focus on other discriminative regions. The proposed model has achieved competitive results on three fine-grained visual classification benchmark datasets: CUB-200-2011, Stanford Cars, and FGVC Aircraft.
Fine-grained visual categorization (FGVC) is an important but challenging task due to high intra-class variances and low inter-class variances caused by deformation, occlusion, illumination, etc. An attention convolutional binary neural tree architec ture is presented to address those problems for weakly supervised FGVC. Specifically, we incorporate convolutional operations along edges of the tree structure, and use the routing functions in each node to determine the root-to-leaf computational paths within the tree. The final decision is computed as the summation of the predictions from leaf nodes. The deep convolutional operations learn to capture the representations of objects, and the tree structure characterizes the coarse-to-fine hierarchical feature learning process. In addition, we use the attention transformer module to enforce the network to capture discriminative features. The negative log-likelihood loss is used to train the entire network in an end-to-end fashion by SGD with back-propagation. Several experiments on the CUB-200-2011, Stanford Cars and Aircraft datasets demonstrate that the proposed method performs favorably against the state-of-the-arts.
Although recent advances in deep learning accelerated an improvement in a weakly supervised object localization (WSOL) task, there are still challenges to identify the entire body of an object, rather than only discriminative parts. In this paper, we propose a novel residual fine-grained attention (RFGA) module that autonomously excites the less activated regions of an object by utilizing information distributed over channels and locations within feature maps in combination with a residual operation. To be specific, we devise a series of mechanisms of triple-view attention representation, attention expansion, and feature calibration. Unlike other attention-based WSOL methods that learn a coarse attention map, having the same values across elements in feature maps, our proposed RFGA learns fine-grained values in an attention map by assigning different attention values for each of the elements. We validated the superiority of our proposed RFGA module by comparing it with the recent methods in the literature over three datasets. Further, we analyzed the effect of each mechanism in our RFGA and visualized attention maps to get insights.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا