ترغب بنشر مسار تعليمي؟ اضغط هنا

The trace-reinforced ants process does not find shortest paths

67   0   0.0 ( 0 )
 نشر من قبل Daniel Kious
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we study a probabilistic reinforcement-learning model for ants searching for the shortest path(s) between their nest and a source of food. In this model, the nest and the source of food are two distinguished nodes $N$ and $F$ in a finite graph $mathcal G$. The ants perform a sequence of random walks on this graph, starting from the nest and stopped when first hitting the source of food. At each step of its random walk, the $n$-th ant chooses to cross a neighbouring edge with probability proportional to the number of preceding ants that crossed that edge at least once. We say that {it the ants find the shortest path} if, almost surely as the number of ants grow to infinity, almost all the ants go from the nest to the source of food through one of the shortest paths, without loosing time on other edges of the graph. Our contribution is three-fold: (1) We prove that, if $mathcal G$ is a tree rooted at $N$ whose leaves have been merged into node $F$, and with one edge between $N$ and $F$, then the ants indeed find the shortest path. (2) In contrast, we provide three examples of graphs on which the ants do not find the shortest path, suggesting that in this model and in most graphs, ants do not find the shortest path. (3) In all these cases, we show that the sequence of normalised edge-weights converge to a {it deterministic} limit, despite a linear-reinforcement mechanism, and we conjecture that this is a general fact which is valid on all finite graphs. To prove these results, we use stochastic approximation methods, and in particular the ODE method. One difficulty comes from the fact that this method relies on understanding the behaviour at large times of the solution of a non-linear, multi-dimensional ODE.



قيم البحث

اقرأ أيضاً

257 - Hamed Amini , Yuval Peres 2012
Consider a random regular graph with degree $d$ and of size $n$. Assign to each edge an i.i.d. exponential random variable with mean one. In this paper we establish a precise asymptotic expression for the maximum number of edges on the shortest-weigh t paths between a fixed vertex and all the other vertices, as well as between any pair of vertices. Namely, for any fixed $d geq 3$, we show that the longest of these shortest-weight paths has about $hat{alpha}log n$ edges where $hat{alpha}$ is the unique solution of the equation $alpha log(frac{d-2}{d-1}alpha) - alpha = frac{d-3}{d-2}$, for $alpha > frac{d-1}{d-2}$.
523 - Russell K. Standish 2013
Anthropic reasoning is a form of statistical reasoning based upon finding oneself a member of a particular reference class of conscious beings. By considering empirical distribution functions defined over animal life on Earth, we can deduce that the vast bulk of animal life is unlikely to be conscious.
The size of the giant component in the configuration model, measured by the asymptotic fraction of vertices in the component, is given by a well-known expression involving the generating function of the degree distribution. In this note, we argue tha t the distribution over small degrees is more important for the size of the giant component than the precise distribution over very large degrees. In particular, the tail behavior of the degree distribution does not play the same crucial role for the size of the giant as it does for many other properties of the graph. Upper and lower bounds for the component size are derived for an arbitrary given distribution over small degrees $dleq L$ and given expected degree, and numerical implementations show that these bounds are close already for small values of $L$. On the other hand, examples illustrate that, for a fixed degree tail, the component size can vary substantially depending on the distribution over small degrees.
In 1903, noted puzzle-maker Henry Dudeney published The Spider and the Fly puzzle, which asks for the shortest path along the surfaces of a square prism between two points (source and target) located on the square faces, and surprisingly showed that the shortest path traverses five faces. Dudeneys source and target points had very symmetrical locations; in this article, we allow the source and target points to be anywhere in the interior of opposite faces, but now require the square prism to be a cube. In this context, we find that, depending on source and target locations, a shortest path can traverse either three or four faces, and we investigate the conditions that lead to four-face solutions and estimate the probability of getting a four-face shortest path. We utilize a combination of numerical calculations, elementary geometry, and transformations we call corner moves of cube unfolding diagrams,
Physarum Polycephalum is a slime mold that is apparently able to solve shortest path problems. A mathematical model has been proposed by biologists to describe the feedback mechanism used by the slime mold to adapt its tubular channels while foragi ng two food sources s0 and s1. We prove that, under this model, the mass of the mold will eventually converge to the shortest s0 - s1 path of the network that the mold lies on, independently of the structure of the network or of the initial mass distribution. This matches the experimental observations by the biologists and can be seen as an example of a natural algorithm, that is, an algorithm developed by evolution over millions of years.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا