ﻻ يوجد ملخص باللغة العربية
An iterative configuration interaction (iCI)-based multiconfigurational self-consistent field (SCF) theory, iCISCF, is proposed to handle systems that require large complete active spaces (CAS). The success of iCISCF stems from three ingredients: (1) efficient selection of individual configuration state functions spanning the CAS, meanwhile maintaining full spin symmetry; (2) the use of Jacobi rotation for the optimization of active orbitals, in conjunction with a quasi-Newton algorithm for the core/active-virtual and core-active orbital rotations; (3) a second-order perturbative treatment of the residual space left over by the selection procedure (i.e., iCISCF(2)). Just like selected iCI being a very accurate approximation to CASCI, iCISCF(2) is a very accurate approximation to CASSCF. Several examples that go beyond the capability of CASSCF are taken as showcases to reveal the performances of iCISCF and iCISCF(2).
An iterative orbital interaction (iOI) approach is proposed to solve, in a bottom-up fashion, the self-consistent field problem in quantum chemistry. While it belongs grossly to the family of fragment-based quantum chemical methods, iOI is distinctiv
Full Configuration Interaction Quantum Monte Carlo (FCIQMC) has been effectively applied to very large configuration interaction (CI) problems, and was recently adapted for use as an active space solver and combined with orbital optimisation. In this
Even when starting with a very poor initial guess, the iterative configuration interaction (iCI) approach can converge from above to full CI very quickly by constructing and diagonalizing a small Hamiltonian matrix at each macro/micro-iteration. Howe
We report an efficient algorithm using density fitting for the relativistic complete active space self-consistent field (CASSCF) method, which is significantly more stable than the algorithm previously reported by one of the authors [J. E. Bates and
Fragmentation methods applied to multireference wave functions constitute a road towards the application of highly accurate ab initio wave function calculations to large molecules and solids. However, it is important for reproducibility and transfera