ﻻ يوجد ملخص باللغة العربية
An iterative orbital interaction (iOI) approach is proposed to solve, in a bottom-up fashion, the self-consistent field problem in quantum chemistry. While it belongs grossly to the family of fragment-based quantum chemical methods, iOI is distinctive in that (1) it divides and conquers not only the energy but also the wave function, and that (2) the subsystems sizes are automatically determined by successively merging neighboring small subsystems until they are just enough for converging the wave function to a given accuracy. Orthonormal occupied and virtual localized molecular orbitals are obtained in a natural manner, which can be used for all post-SCF purposes.
An iterative configuration interaction (iCI)-based multiconfigurational self-consistent field (SCF) theory, iCISCF, is proposed to handle systems that require large complete active spaces (CAS). The success of iCISCF stems from three ingredients: (1)
We introduce an iterative scheme to prove the Yamabe problem $ - aDelta_{g} u + S u = lambda u^{p-1} $, firstly on open domain $ (Omega, g) $ with Dirichlet boundary conditions, and then on closed manifolds $ (M, g) $ by local argument. It is a new p
Employing a local formula for the electron-electron interaction energy, we derive a self-consistent approximation for the total energy of a general $N$-electron system. Our scheme works as a local variant of the Thomas-Fermi approximation and yields
Fragmentation methods applied to multireference wave functions constitute a road towards the application of highly accurate ab initio wave function calculations to large molecules and solids. However, it is important for reproducibility and transfera
We present a first principles molecular dynamics approach that is based on time-reversible ex- tended Lagrangian Born-Oppenheimer molecular dynamics [Phys. Rev. Lett. 100, 123004 (2008)] in the limit of vanishing self-consistent field optimization. T