ﻻ يوجد ملخص باللغة العربية
The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator (LS) detector for neutrino mass ordering and other neutrino physics research. The detector uses large-size $20$ inches photomultiplier tubes to detect photons from a liquid scintillator. The large PMTs are sensitive and easily affected such that the detection efficiency loses about 60$%$ under the geomagnetic field intensity ($sim$500 mG). It has a significantly negative effect on the detector performance, and a compensation system is necessary for geomagnetic field shielding. As permalloys are easily rusted in water, a better way for the geomagnetic shielding is to apply an active compensation coils system. The simulations show that a set of 32 circular coils can meet the experiment requirement. The residual magnetic field is less than 0.05 G in the Central Detector Photomultiplier Tube (CD-PMT) region (38.5-39.5 m in diameter). A prototype coil system with a 1.2 m was built to validate the simulation and the design. The measured data of prototype and simulation results are consistent with each other, and geomagnetic field intensity is effectively reduced by coils, verifying the shielding coils system design for JUNO. This study is expected to provide practical guidance for the PMT magnetic field shielding for future large-scale detector designs.
A Guide Tube Calibration System (GTCS) has been designed for the Jiangmen Underground Neutrino Observatory (JUNO), in order to measure the detector energy response near the outer radius of the active volume. Recently, a prototype system has been cons
Jiangmen Underground Neutrino Observatory (JUNO) is designed to determine the neutrino mass hierarchy using a 20 kton liquid scintillator detector. To calibrate detector boundary effect, the Guide Tube Calibration System (GTCS) has been designed to d
The Jiangmen Underground Neutrino Observatory (JUNO) is a medium-baseline neutrino experiment under construction in China, with the goal to determine the neutrino mass hierarchy. The JUNO electronics readout system consists of an underwater front-end
A study on the use of a machine learning algorithm for the level 1 trigger decision in the JUNO experiment ispresented. JUNO is a medium baseline neutrino experiment in construction in China, with the main goal of determining the neutrino mass hierar
The Jiangmen Underground Neutrino Observatory (JUNO), a multi-purpose neutrino experiment, will use 20 kt liquid scintillator (LS). To achieve the physics goal of determining the neutrino mass ordering, 3$%$ energy resolution at 1 MeV is required. Th