ترغب بنشر مسار تعليمي؟ اضغط هنا

Construction and Simulation Bias Study of The Guide Tube Calibration System for JUNO

112   0   0.0 ( 0 )
 نشر من قبل Yuhang Guo
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A Guide Tube Calibration System (GTCS) has been designed for the Jiangmen Underground Neutrino Observatory (JUNO), in order to measure the detector energy response near the outer radius of the active volume. Recently, a prototype system has been constructed and tested, and the calibration algorithm has also been studied to evaluate the risk when the simulation tuning and the error control fail. In this paper, we first report its construction and the performance tests in the lab. Then the influence on the global energy measurement caused by the simulation bias of GTCS is discussed, in order to make sure the algorithm is qualified.



قيم البحث

اقرأ أيضاً

Jiangmen Underground Neutrino Observatory (JUNO) is designed to determine the neutrino mass hierarchy using a 20 kton liquid scintillator detector. To calibrate detector boundary effect, the Guide Tube Calibration System (GTCS) has been designed to d eploy a radioactive source along a given longitude on the outer surface of the detector. In this paper, we studied the physics case of this system via simulation, which leads to a mechanical design.
125 - G. Zhang , J. Songwadhana , H. Lu 2021
The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator (LS) detector for neutrino mass ordering and other neutrino physics research. The detector uses large-size $20$ inches photomultiplier tubes to detect photons from a liquid scintillator. The large PMTs are sensitive and easily affected such that the detection efficiency loses about 60$%$ under the geomagnetic field intensity ($sim$500 mG). It has a significantly negative effect on the detector performance, and a compensation system is necessary for geomagnetic field shielding. As permalloys are easily rusted in water, a better way for the geomagnetic shielding is to apply an active compensation coils system. The simulations show that a set of 32 circular coils can meet the experiment requirement. The residual magnetic field is less than 0.05 G in the Central Detector Photomultiplier Tube (CD-PMT) region (38.5-39.5 m in diameter). A prototype coil system with a 1.2 m was built to validate the simulation and the design. The measured data of prototype and simulation results are consistent with each other, and geomagnetic field intensity is effectively reduced by coils, verifying the shielding coils system design for JUNO. This study is expected to provide practical guidance for the PMT magnetic field shielding for future large-scale detector designs.
We present the calibration strategy for the 20 kton liquid scintillator central detector of the Jiangmen Underground Neutrino Observatory (JUNO). By utilizing a comprehensive multiple-source and multiple-positional calibration program, in combination with a novel dual calorimetry technique exploiting two independent photosensors and readout systems, we demonstrate that the JUNO central detector can achieve a better than 1% energy linearity and a 3% effective energy resolution, required by the neutrino mass ordering determination.
This paper describes the design and construction of the automatic calibration unit (ACU) for the JUNO experiment. The ACU is a fully automated mechanical system. It is capable of deploying multiple radioactive sources, an ultraviolet (UV) laser sourc e, or an auxiliary sensor such as a temperature sensor, one at a time, into the central detector of JUNO along the central axis. It is designed as a primary tool to precisely calibrate the energy scale of detector, aligning timing for the photosensors, and partially monitoring the position-dependent energy scale variations.
The Jiangmen Underground Neutrino Observatory (JUNO) is a medium-baseline neutrino experiment under construction in China, with the goal to determine the neutrino mass hierarchy. The JUNO electronics readout system consists of an underwater front-end electronics system and an outside-water back-end electronics system. These two parts are connected by 100-meter Ethernet cables and power cables. The back-end card (BEC) is the part of the JUNO electronics readout system used to link the underwater boxes to the trigger system is connected to transmit the system clock and triggered signals. Each BEC is connected to 48 underwater boxes, and in total around 150 BECs are needed. It is essential to verify the physical layer links before applying real connection with the underwater system. Therefore, our goal is to build an automatic test system to check the physical link performance. The test system is based on a custom designed FPGA board, in order to make the design general, only JTAG is used as the interface to the PC. The system can generate and check different data pattern at different speeds for 96 channels simultaneously. The test results of 1024 continuously clock cycles are automatically uploaded to PC periodically. We describe the setup of the automatic test system of the BEC and present the latest test results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا