ترغب بنشر مسار تعليمي؟ اضغط هنا

Synthesis of Murunskite Single Crystals: A Bridge Between Cuprates and Pnictides

68   0   0.0 ( 0 )
 نشر من قبل Davor Tolj
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Numerous contemporary investigations in condensed matter physics are devoted to high temperature (high-$T_c$ ) cuprate superconductors. Despite its unique effulgence among research subjects, the enigma of the high-$T_c$ mechanism still persists. One way to advance its understanding is to discover and study new analogous systems. Here we begin a novel exploration of the natural mineral murunskite, K$_2$FeCu$_3$S$_4$, as an interpolation compound between cuprates and ferropnictides, the only known high-$T_c$ superconductors at ambient pressure. Because in-depth studies can be carried out only on single crystals, we have mastered the synthesis and growth of high quality specimens. Similar to the cuprate parent compounds, these show semiconducting behavior in resistivity and optical transmittance, and an antiferromagnetic ordering at 100 K. Spectroscopy (XPS) and calculations (DFT) concur that the sulfur 3$p$ orbitals are partially open, making them accessible for charge manipulation, which is a prerequisite for superconductivity in analogous layered structures. DFT indicates that the valence band is more cuprate-like, while the conduction band is more pnictide-like. With appropriate doping strategies, this parent compound promises exciting future developments.



قيم البحث

اقرأ أيضاً

59 - J.-Q. Yan , Y. H. Liu , D. Parker 2019
MnBi$_4$Te$_{7}$ and MnBi$_6$Te$_{10}$ are two members with n=2 and 3 in the family of MnBi$_{2n}$Te$_{3n+1}$ where the n=1 member, MnBi$_2$Te$_{4}$, has been intensively investigated as the first intrinsic antiferromagnetic topological insulator. He re we report the A-type antiferromagnetic order in these two compounds by measuring magnetic properties, electrical and thermal transport, specific heat, and single crystal neutron diffraction. Both compounds order into an A-type antiferromagnetic structure as does MnBi$_2$Te$_{4}$ with ferromagnetic planes coupled antiferromagnetically along the crystallographic textit{c} axis. While no evidence for any in-plane ordered moment is found for MnBi$_2$Te$_{4}$ or MnBi$_6$Te$_{10}$, weak reflections at half-L positions along the [0 0 L] direction are observed for MnBi$_4$Te$_{7}$ suggesting an in-plane ordered moment around 0.15$mu_{B}$/Mn. The ordering temperature, T$_N$, is 13,K for MnBi$_4$Te$_{7}$ and 11,K for MnBi$_6$Te$_{10}$. The magnetic order is also manifested in the anisotropic magnetic properties. For both compounds, the interlayer coupling is weak and a spin flip transition occurs when a magnetic field of around 1.6,kOe is applied along the textit{c}-axis at 2,K. As observed in MnBi$_2$Te$_4$, when cooling across T$_N$, no anomaly was observed in the temperature dependence of thermopower. On the other hand, critical scattering effects are observed in thermal conductivity although the effect is less pronounced than that in MnBi$_2$Te$_{4}$.
The longitudinal in-plane magnetoresistance (LMR) has been measured in different Ba(Fe_(1-x)Co_x)2As2 single crystals and in LiFeAs. For all these compounds, we find a negative LMR in the paramagnetic phase whose magnitude increases as H^2. We show t hat this negative LMR can be readily explained in terms of suppression of the spin fluctuations by the magnetic field. In the Co-doped samples, the absolute value of the LMR coefficient is found to decrease with doping content in the paramagnetic phase. The analysis of its T dependence in an itinerant nearly antiferromagnetic Fermi liquid model evidences that the LMR displays a qualitative change of T variation with increasing Co content. The latter occurs at optimal doping for which the antiferromagnetic ground state is suppressed. The same type of analysis for the negative LMR measured in LiFeAs suggests that this compound is on the verge of magnetism.
The magnetic and transport properties of Fe-deficient Fe5GeTe2 single crystals (Fe5-xGeTe2 with x~0.3) were studied and the impact of thermal processing was explored. Quenching crystals from the growth temperature has been previously shown to produce a metastable state that undergoes a strongly hysteretic first-order transition upon cooling below ~100K. The first-order transition impacts the magnetic properties, yielding an enhancement in the Curie temperature T_C from 270 to 310K. In the present work, T_HT ~550K has been identified as the temperature above which metastable crystals are obtained via quenching. Diffraction experiments reveal a structural change at this temperature, and significant stacking disorder occurs when samples are slowly cooled through this temperature range. The transport properties are demonstrated to be similar regardless of the crystals thermal history. The scattering of charge carriers appears to be dominated by moments fluctuating on the Fe(1) sublattice, which remain dynamic down to 100-120K. Maxima in the magnetoresistance and anomalous Hall resistance are observed near 120K. The Hall and Seebeck coefficients are also impacted by magnetic ordering on the Fe(1) sublattice. The data suggest that both electrons and holes contribute to conduction above 120K, but that electrons dominate at lower temperature when all of the Fe sublattices are magnetically ordered. This study demonstrates a strong coupling of the magnetism and transport properties in Fe5-xGeTe2 and complements the previous results that demonstrated strong magnetoelastic coupling as the Fe(1) moments order. The published version of this manuscript is DOI:10.1103/PhysRevMaterials.3.104401 (2019)
The structural and magnetic phase transitions have been studied on NdFeAsO single crystals by neutron and x-ray diffraction complemented by resistivity and specific heat measurements. Two low-temperature phase transitions have been observed in additi on to the tetragonal-to-orthorhombic transition at T_S = 142 K and the onset of antiferromagnetic (AFM) Fe order below T_N = 137 K. The Fe moments order AFM in the well-known stripe-like structure in the (ab) plane, but change from AFM to ferromagnetic (FM) arrangement along the c direction below T* = 15 K accompanied by the onset of Nd AFM order below T_Nd = 6 K with this same AFM configuration. The iron magnetic order-order transition in NdFeAsO accentuates the Nd-Fe interaction and the delicate balance of c-axis exchange couplings that results in AFM in LaFeAsO and FM in CeFeAsO and PrFeAsO.
Single crystals of the three-dimensional frustrated magnet and spin liquid candidate compound PbCuTe$_2$O$_6$, were grown using both the Travelling Solvent Floating Zone (TSFZ) and the Top-Seeded Solution Growth (TSSG) techniques. The growth conditio ns were optimized by investigating the thermal properties. The quality of the crystals was checked by polarized optical microscopy, X-ray Laue and X-ray powder diffraction, and compared to the polycrystalline samples. Excellent quality crystals were obtained by the TSSG method. Magnetic measurements of these crystals revealed a small anisotropy for different crystallographic directions in comparison with the previously reported data. The heat capacity of both single crystal and powder samples reveal a transition anomaly around 1~K. Curiously the position and magnitude of the transition are strongly dependent on the crystallite size and it is almost entirely absent for the smallest crystallites. A structural transition is suggested which accompanies the reported ferroelectric transition, and a scenario whereby it becomes energetically unfavourable in small crystallites is proposed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا