ترغب بنشر مسار تعليمي؟ اضغط هنا

Some tight bounds on the minimum and maximum forcing numbers of graphs

100   0   0.0 ( 0 )
 نشر من قبل Qianqian Liu
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $G$ be a simple graph with $2n$ vertices and a perfect matching. The forcing number of a perfect matching $M$ of $G$ is the smallest cardinality of a subset of $M$ that is contained in no other perfect matching of $G$. Let $f(G)$ and $F(G)$ denote the minimum and maximum forcing number of $G$ among all perfect matchings, respectively. Hetyei obtained that the maximum number of edges of graphs $G$ with a unique perfect matching is $n^2$ (see Lov{a}sz [20]). We know that $G$ has a unique perfect matching if and only if $f(G)=0$. Along this line, we generalize the classical result to all graphs $G$ with $f(G)=k$ for $0leq kleq n-1$, and obtain that the number of edges is at most $n^2+2nk-k^2-k$ and characterize the extremal graphs as well. Conversely, we get a non-trivial lower bound of $f(G)$ in terms of the order and size. For bipartite graphs, we gain corresponding stronger results. Further, we obtain a new upper bound of $F(G)$. Finally some open problems and conjectures are proposed.



قيم البحث

اقرأ أيضاً

Let $G$ be a simple graph with $2n$ vertices and a perfect matching. The forcing number $f(G,M)$ of a perfect matching $M$ of $G$ is the smallest cardinality of a subset of $M$ that is contained in no other perfect matching of $G$. Among all perfect matchings $M$ of $G$, the minimum and maximum values of $f(G,M)$ are called the minimum and maximum forcing numbers of $G$, denoted by $f(G)$ and $F(G)$, respectively. Then $f(G)leq F(G)leq n-1$. Che and Chen (2011) proposed an open problem: how to characterize the graphs $G$ with $f(G)=n-1$. Later they showed that for bipartite graphs $G$, $f(G)=n-1$ if and only if $G$ is complete bipartite graph $K_{n,n}$. In this paper, we solve the problem for general graphs and obtain that $f(G)=n-1$ if and only if $G$ is a complete multipartite graph or $K^+_{n,n}$ ($K_{n,n}$ with arbitrary additional edges in the same partite set). For a larger class of graphs $G$ with $F(G)=n-1$ we show that $G$ is $n$-connected and a brick (3-connected and bicritical graph) except for $K^+_{n,n}$. In particular, we prove that the forcing spectrum of each such graph $G$ is continued by matching 2-switches and the minimum forcing numbers of all such graphs $G$ form an integer interval from $lfloorfrac{n}{2}rfloor$ to $n-1$.
A pebbling move on a graph removes two pebbles at a vertex and adds one pebble at an adjacent vertex. Rubbling is a version of pebbling where an additional move is allowed. In this new move, one pebble each is removed at vertices $v$ and $w$ adjacent to a vertex $u$, and an extra pebble is added at vertex $u$. A vertex is reachable from a pebble distribution if it is possible to move a pebble to that vertex using rubbling moves. The rubbling number is the smallest number $m$ needed to guarantee that any vertex is reachable from any pebble distribution of $m$ pebbles. The optimal rubbling number is the smallest number $m$ needed to guarantee a pebble distribution of $m$ pebbles from which any vertex is reachable. We give bounds for rubbling and optimal rubbling numbers. In particular, we find an upper bound for the rubbling number of $n$-vertex, diameter $d$ graphs, and estimates for the maximum rubbling number of diameter 2 graphs. We also give a sharp upper bound for the optimal rubbling number, and sharp upper and lower bounds in terms of the diameter.
The minimum forcing number of a graph $G$ is the smallest number of edges simultaneously contained in a unique perfect matching of $G$. Zhang, Ye and Shiu cite{HDW} showed that the minimum forcing number of any fullerene graph was bounded below by $3 $. However, we find that there exists exactly one excepted fullerene $F_{24}$ with the minimum forcing number $2$. In this paper, we characterize all fullerenes with the minimum forcing number $3$ by a construction approach. This also solves an open problem proposed by Zhang et al. We also find that except for $F_{24}$, all fullerenes with anti-forcing number $4$ have the minimum forcing number $3$. In particular, the nanotube fullerenes of type $(4, 2)$ are such fullerenes.
We study Ramseys theorem for pairs and two colours in the context of the theory of $alpha$-large sets introduced by Ketonen and Solovay. We prove that any $2$-colouring of pairs from an $omega^{300n}$-large set admits an $omega^n$-large homogeneous s et. We explain how a formalized version of this bound gives a more direct proof, and a strengthening, of the recent result of Patey and Yokoyama [Adv. Math. 330 (2018), 1034--1070] stating that Ramseys theorem for pairs and two colours is $forallSigma^0_2$-conservative over the axiomatic theory $mathsf{RCA}_0$ (recursive comprehension).
Given a simple graph $G$, denote by $Delta(G)$, $delta(G)$, and $chi(G)$ the maximum degree, the minimum degree, and the chromatic index of $G$, respectively. We say $G$ is emph{$Delta$-critical} if $chi(G)=Delta(G)+1$ and $chi(H)le Delta(G)$ for eve ry proper subgraph $H$ of $G$; and $G$ is emph{overfull} if $|E(G)|>Delta lfloor |V(G)|/2 rfloor$. Since a maximum matching in $G$ can have size at most $lfloor |V(G)|/2 rfloor$, it follows that $chi(G) = Delta(G) +1$ if $G$ is overfull. Conversely, let $G$ be a $Delta$-critical graph. The well known overfull conjecture of Chetwynd and Hilton asserts that $G$ is overfull provided $Delta(G) > |V(G)|/3$. In this paper, we show that any $Delta$-critical graph $G$ is overfull if $Delta(G) - 7delta(G)/4ge(3|V(G)|-17)/4$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا