ترغب بنشر مسار تعليمي؟ اضغط هنا

On the stability of the $L^{2}$ projection and the quasiinterpolant in the space of smooth periodic splines

97   0   0.0 ( 0 )
 نشر من قبل Dimitrios Antonopoulos
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we derive stability estimates in $L^{2}$- and $L^{infty}$- based Sobolev spaces for the $L^{2}$ projection and a family of quasiinterolants in the space of smooth, 1-periodic, polynomial splines defined on a uniform mesh in $[0,1]$. As a result of the assumed periodicity and the uniform mesh, cyclic matrix techniques and suitable decay estimates of the elements of the inverse of a Gram matrix associated with the standard basis of the space of splines, are used to establish the stability results.



قيم البحث

اقرأ أيضاً

We show stability of the $L^2$-projection onto Lagrange finite element spaces with respect to (weighted) $L^p$ and $W^{1,p}$-norms for any polynomial degree and for any space dimension under suitable conditions on the mesh grading. This includes $W^{ 1,2}$-stability in two space dimensions for any polynomial degree and meshes generated by newest vertex bisection. Under realistic but conjectured assumptions on the mesh grading in three dimensions we show $W^{1,2}$-stability for all polynomial degrees. We also propose a modified bisection strategy that leads to better $W^{1,p}$-stability. Moreover, we investigate the stability of the $L^2$-projection onto Crouzeix-Raviart elements.
We show that, on convex polytopes and two or three dimensions, the finite element Stokes projection is stable on weighted spaces $mathbf{W}^{1,p}_0(omega,Omega) times L^p(omega,Omega)$, where the weight belongs to a certain Muckenhoupt class and the integrability index can be different from two. We show how this estimate can be applied to obtain error estimates for approximations of the solution to the Stokes problem with singular sources.
A convergence theory for the $hp$-FEM applied to a variety of constant-coefficient Helmholtz problems was pioneered in the papers [Melenk-Sauter, 2010], [Melenk-Sauter, 2011], [Esterhazy-Melenk, 2012], [Melenk-Parsania-Sauter, 2013]. This theory show s that, if the solution operator is bounded polynomially in the wavenumber $k$, then the Galerkin method is quasioptimal provided that $hk/p leq C_1$ and $pgeq C_2 log k$, where $C_1$ is sufficiently small, $C_2$ is sufficiently large, and both are independent of $k,h,$ and $p$. This paper proves the analogous quasioptimality result for the heterogeneous (i.e. variable coefficient) Helmholtz equation, posed in $mathbb{R}^d$, $d=2,3$, with the Sommerfeld radiation condition at infinity, and $C^infty$ coefficients. We also prove a bound on the relative error of the Galerkin solution in the particular case of the plane-wave scattering problem.
We consider the periodic initial-value problem for the Serre equations of water-wave theory and its semidiscrete approximation in the space of smooth periodic polynomial splines. We prove that the semidiscrete problem is well posed, locally in time, and satisfies a discrete positivity property for the water depth.
116 - Bin Fan , Chuanju Xu 2021
In this paper, we consider the inverse source problem for the time-fractional diffusion equation, which has been known to be an ill-posed problem. To deal with the ill-posedness of the problem, we propose to transform the problem into a regularized p roblem with L^2 and total variational (TV) regularization terms. Differing from the classical Tikhonov regularization with L^2 penalty terms, the TV regularization is beneficial for reconstructing discontinuous or piecewise constant solutions. The regularized problem is then approximated by a fully discrete scheme. Our theoretical results include: estimate of the error order between the discrete problem and the continuous direct problem; the convergence rate of the discrete regularized solution to the target source term; and the convergence of the regularized solution with respect to the noise level. Then we propose an accelerated primal-dual iterative algorithm based on an equivalent saddle-point reformulation of the discrete regularized model. Finally, a series of numerical tests are carried out to demonstrate the efficiency and accuracy of the algorithm.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا