ﻻ يوجد ملخص باللغة العربية
In this paper we derive stability estimates in $L^{2}$- and $L^{infty}$- based Sobolev spaces for the $L^{2}$ projection and a family of quasiinterolants in the space of smooth, 1-periodic, polynomial splines defined on a uniform mesh in $[0,1]$. As a result of the assumed periodicity and the uniform mesh, cyclic matrix techniques and suitable decay estimates of the elements of the inverse of a Gram matrix associated with the standard basis of the space of splines, are used to establish the stability results.
We show stability of the $L^2$-projection onto Lagrange finite element spaces with respect to (weighted) $L^p$ and $W^{1,p}$-norms for any polynomial degree and for any space dimension under suitable conditions on the mesh grading. This includes $W^{
We show that, on convex polytopes and two or three dimensions, the finite element Stokes projection is stable on weighted spaces $mathbf{W}^{1,p}_0(omega,Omega) times L^p(omega,Omega)$, where the weight belongs to a certain Muckenhoupt class and the
A convergence theory for the $hp$-FEM applied to a variety of constant-coefficient Helmholtz problems was pioneered in the papers [Melenk-Sauter, 2010], [Melenk-Sauter, 2011], [Esterhazy-Melenk, 2012], [Melenk-Parsania-Sauter, 2013]. This theory show
We consider the periodic initial-value problem for the Serre equations of water-wave theory and its semidiscrete approximation in the space of smooth periodic polynomial splines. We prove that the semidiscrete problem is well posed, locally in time,
In this paper, we consider the inverse source problem for the time-fractional diffusion equation, which has been known to be an ill-posed problem. To deal with the ill-posedness of the problem, we propose to transform the problem into a regularized p