ﻻ يوجد ملخص باللغة العربية
We consider high dimensional random optimization problems where the dynamical variables are subjected to non-convex excluded volume constraints. We focus on the case in which the cost function is a simple quadratic cost and the excluded volume constraints are modeled by a perceptron constraint satisfaction problem. We show that depending on the density of constraints, one can have different situations. If the number of constraints is small, one typically has a phase where the ground state of the cost function is unique and sits on the boundary of the island of configurations allowed by the constraints. In this case there is an hypostatic number of constraints that are marginally satisfied. If the number of constraints is increased one enters in a glassy phase where the cost function has many local minima sitting again on the boundary of the regions of allowed configurations. At the phase transition point the total number of constraints that are marginally satisfied becomes equal to the number of degrees of freedom in the problem and therefore we say that these minima are isostatic. We conjecture that increasing further the constraints the system stays isostatic up to the point where the volume of available phase space shrinks to zero. We derive our results using the replica method and we also analyze a dynamical algorithm, the Karush-Kuhn-Tucker algorithm, through dynamical mean field theory and we show how to recover the results of the replica approach in the replica symmetric phase.
The effect of excluded volume interactions on the structure of a polymer in shear flow is investigated by Brownian Dynamics simulations for chains with size $30leq Nleq 300$. The main results concern the structure factor $S({bf q})$ of chains of N=30
In Generalized Linear Estimation (GLE) problems, we seek to estimate a signal that is observed through a linear transform followed by a component-wise, possibly nonlinear and noisy, channel. In the Bayesian optimal setting, Generalized Approximate Me
The adsorption of charged colloids (macroions) onto an oppositely charged planar substrate is investigated theoretically. Taking properly into account the finite size of the macroions, unusual behaviors are reported. It is found that the role of the
As an extension of the isotropic setting presented in the companion paper [J. Phys. A 52, 144002 (2019)], we consider the Langevin dynamics of a many-body system of pairwise interacting particles in $d$ dimensions, submitted to an external shear stra
When optimizing over loss functions it is common practice to use momentum-based accelerated methods rather than vanilla gradient-based method. Despite widely applied to arbitrary loss function, their behaviour in generically non-convex, high dimensio