ﻻ يوجد ملخص باللغة العربية
As an extension of the isotropic setting presented in the companion paper [J. Phys. A 52, 144002 (2019)], we consider the Langevin dynamics of a many-body system of pairwise interacting particles in $d$ dimensions, submitted to an external shear strain. We show that the anisotropy introduced by the shear strain can be simply addressed by moving into the co-shearing frame, leading to simple dynamical mean field equations in the limit ${dtoinfty}$. The dynamics is then controlled by a single one-dimensional effective stochastic process which depends on three distinct strain-dependent kernels - self-consistently determined by the process itself - encoding the effective restoring force, friction and noise terms due to the particle interactions. From there one can compute dynamical observables such as particle mean-square displacements and shear stress fluctuations, and eventually aim at providing an exact ${d to infty}$ benchmark for liquid and glass rheology. As an application of our results, we derive dynamically the state-following equations that describe the static response of a glass to a finite shear strain until it yields.
We consider the Langevin dynamics of a many-body system of interacting particles in $d$ dimensions, in a very general setting suitable to model several out-of-equilibrium situations, such as liquid and glass rheology, active self-propelled particles,
It was recently claimed that on d-dimensional small-world networks with a density p of shortcuts, the typical separation s(p) ~ p^{-1/d} between shortcut-ends is a characteristic length for shortest-paths{cond-mat/9904419}. This contradicts an earlie
The spatially uniaxially anisotropic d=3 Ising spin glass is solved exactly on a hierarchical lattice. Five different ordered phases, namely ferromagnetic, columnar, layered, antiferromagnetic, and spin-glass phases, are found in the global phase dia
In this work we compare and characterize the behavior of Langevin and Dissipative Particle Dynamics (DPD) thermostats in a broad range of non-equilibrium simulations of polymeric systems. Polymer brushes in relative sliding motion, polymeric liquids
We consider the spatial correlation function of the two-dimensional Ising spin glass under out-equilibrium conditions. We pay special attention to the scaling limit reached upon approaching zero temperature. The field-theory of a non-interacting fiel