ﻻ يوجد ملخص باللغة العربية
Active, selective and stable catalysts are imperative for sustainable energy conversion, and engineering materials with such properties are highly desired. High-entropy alloys (HEAs) offer a vast compositional space for tuning such properties. Too vast, however, to traverse without the proper tools. Here, we report the use of Bayesian optimization on a model based on density functional theory (DFT) to predict the most active compositions for the electrochemical oxygen reduction reaction (ORR) with the least possible number of sampled compositions for the two HEAs Ag-Ir-Pd-Pt-Ru and Ir-Pd-Pt-Rh-Ru. The discovered optima are then scrutinized with DFT and subjected to experimental validation where optimal catalytic activities are verified for Ag-Pd, Ir-Pt, and Pd-Ru binary systems. This study offers insight into the number of experiments needed for exploring the vast compositional space of multimetallic alloys which has been determined to be on the order of 50 for ORR on these HEAs.
The four-electron oxygen reduction reaction on Pt catalyst in alkaline solution undergoes proton transfer via tunneling mechanism. The hydrogen/deuterium kinetic isotopic rate constant ratio (kH/kD ) = 32 in a low overpotential region, indicating the
Electrocatalysts for bifunctional oxygen reduction (ORR) and oxygen evolution reaction (OER) are commonly studied under hydrodynamic conditions, rendering the use of binders necessary to ensure the mechanical stability of the electrode films. The pre
With important application prospects, eutectic high entropy alloys have received extensive attention for their excellent strength and ductility in a large temperature range. The excellent casting characteristics of eutectic high entropy alloys make i
Research on high-entropy-alloy (HEA) superconductors is a growing field in material science. In this study, we explored new HEA-type superconductors and discovered a CuAl2-type superconductor Co0.2Ni0.1Cu0.1Rh0.3Ir0.3Zr2 with a HEA-type transition me
A high-entropy-alloy-type (HEA-type) superconductor is new category of highly disordered superconductors. Therefore, finding brand-new superconducting characteristics in the HEA-type superconductors would open new avenue to investigate the relationsh