ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum-to-Classical Transition of Proton-Transfer in Electrocatalytic Oxygen Reduction

106   0   0.0 ( 0 )
 نشر من قبل Ken Sakaushi
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The four-electron oxygen reduction reaction on Pt catalyst in alkaline solution undergoes proton transfer via tunneling mechanism. The hydrogen/deuterium kinetic isotopic rate constant ratio (kH/kD ) = 32 in a low overpotential region, indicating the importance of the quantum-proton-tunneling at the rate-determining step (RDS). However, kH/kD goes down to 3 in a high overpotential region, suggesting the classical proton-transfer (PT) scheme. Therefore, there is a quantum-to-classical transition of PT process as a function of potential, which is confirmed by theoretical study.



قيم البحث

اقرأ أيضاً

Active, selective and stable catalysts are imperative for sustainable energy conversion, and engineering materials with such properties are highly desired. High-entropy alloys (HEAs) offer a vast compositional space for tuning such properties. Too va st, however, to traverse without the proper tools. Here, we report the use of Bayesian optimization on a model based on density functional theory (DFT) to predict the most active compositions for the electrochemical oxygen reduction reaction (ORR) with the least possible number of sampled compositions for the two HEAs Ag-Ir-Pd-Pt-Ru and Ir-Pd-Pt-Rh-Ru. The discovered optima are then scrutinized with DFT and subjected to experimental validation where optimal catalytic activities are verified for Ag-Pd, Ir-Pt, and Pd-Ru binary systems. This study offers insight into the number of experiments needed for exploring the vast compositional space of multimetallic alloys which has been determined to be on the order of 50 for ORR on these HEAs.
Electrocatalysts for bifunctional oxygen reduction (ORR) and oxygen evolution reaction (OER) are commonly studied under hydrodynamic conditions, rendering the use of binders necessary to ensure the mechanical stability of the electrode films. The pre sence of a binder, however, may influence the properties of the materials under examination to an unknown extent. Herein, we investigate the impact of Nafion on a highly active ORR/OER catalyst consisting of MnFeNi oxide nanoparticles supported on multi-walled carbon nanotubes. Electrochemical studies revealed that, in addition to enhancing the mechanical stability and particle connectivity, Nafion poses a major impact on the ORR selectivity, which correlates with a decrease in the valence state of Mn according to X-ray absorption spectroscopy. These findings call for awareness regarding the use of electrode additives, since in some cases the extent of their impact on the properties of electrode films cannot be regarded as negligible.
We study the dynamical complexity of an open quantum driven double-well oscillator, mapping its dependence on effective Plancks constant $hbar_{eff}equivbeta$ and coupling to the environment, $Gamma$. We study this using stochastic Schrodinger equati ons, semiclassical equations, and the classical limit equation. We show that (i) the dynamical complexity initially increases with effective Hilbert space size (as $beta$ decreases) such that the most quantum systems are the least dynamically complex. (ii) If the classical limit is chaotic, that is the most dynamically complex (iii) if the classical limit is regular, there is always a quantum system more dynamically complex than the classical system. There are several parameter regimes where the quantum system is chaotic even though the classical limit is not. While some of the quantum chaotic attractors are of the same family as the classical limiting attractors, we also find a quantum attractor with no classical counterpart. These phenomena occur in experimentally accessible regimes.
The search for earth abundant, efficient and stable electrocatalysts that can enable the chemical reduction of CO2 to value-added chemicals and fuels at an industrially relevant scale, is a high priority for the development of a global network of ren ewable energy conversion and storage systems that can meaningfully impact greenhouse gas induced climate change. Here we introduce a straightforward, low cost, scalable and technologically relevant method to manufacture an all-carbon, electroactive, nitrogen-doped nanoporous carbon-carbon nanotube composite membrane, dubbed HNCM-CNT. The membrane is demonstrated to function as a binder-free, high-performance electrode for the electrocatalytic reduction of CO2 to formate. The Faradaic efficiency for the production of formate is 81%. Furthermore, the robust structural and electrochemical properties of the membrane endow it with excellent long-term stability.
We study how decoherence rules the quantum-classical transition of the Kicked Harmonic Oscillator (KHO). When the amplitude of the kick is changed the system presents a classical dynamics that range from regular to a strong chaotic behavior. We show that for regular and mixed classical dynamics, and in the presence of noise, the distance between the classical and the quantum phase space distributions is proportional to a single parameter $chiequiv Khbar_{rm eff}^2/4D^{3/2}$ which relates the effective Planck constant $hbar_{rm eff}$, the kick amplitude $K$ and the diffusion constant $D$. This is valid when $chi < 1$, a case that is always attainable in the semiclassical regime independently of the value of the strength of noise given by $D$. Our results extend a recent study performed in the chaotic regime.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا