ﻻ يوجد ملخص باللغة العربية
We prove large deviation results for the position of the rightmost particle, denoted by $M_n$, in a one-dimensional branching random walk in a case when Cramers condition is not satisfied. More precisely we consider step size distributions with stretched exponential upper and lower tails, i.e.~both tails decay as $e^{-|t|^r}$ for some $rin( 0,1)$. It is known that in this case, $M_n$ grows as $n^{1/r}$ and in particular faster than linearly in $n$. Our main result is a large deviation principle for the laws of $n^{-1/r}M_n$ . In the proof we use a comparison with the maximum of (a random number of) independent random walks, denoted by $tilde M_n$, and we show a large deviation principle for the laws of $n^{-1/r}tilde M_n$ as well.
We study the one-dimensional branching random walk in the case when the step size distribution has a stretched exponential tail, and, in particular, no finite exponential moments. The tail of the step size $X$ decays as $mathbb{P}[X geq t] sim a exp(
In this work, we consider a modification of the usual Branching Random Walk (BRW), where we give certain independent and identically distributed (i.i.d.) displacements to all the particles at the $n$-th generation, which may be different from the dri
We study one-dimensional nearest neighbour random walk in site-random environment. We establish precise (sharp) large deviations in the so-called ballistic regime, when the random walk drifts to the right with linear speed. In the sub-ballistic regim
We obtain estimates for large and moderate deviations for the capacity of the range of a random walk on $mathbb{Z}^d$, in dimension $dge 5$, both in the upward and downward directions. The results are analogous to those we obtained for the volume of
We obtain sharp upper and lower bounds for the moderate deviations of the volume of the range of a random walk in dimension five and larger. Our results encompass two regimes: a Gaussian regime for small deviations, and a stretched exponential regime