ﻻ يوجد ملخص باللغة العربية
A high-order method to evolve in time electromagnetic and velocity fields in conducting fluids with non-periodic boundaries is presented. The method has a small overhead compared with fast FFT-based pseudospectral methods in periodic domains. It uses the magnetic vector potential formulation for accurately enforcing the null divergence of the magnetic field, and allowing for different boundary conditions including perfectly conducting walls or vacuum surroundings, two cases relevant for many astrophysical, geophysical, and industrial flows. A spectral Fourier continuation method is used to accurately represent all fields and their spatial derivatives, allowing also for efficient solution of Poisson equations with different boundaries. A study of conducting flows at different Reynolds and Hartmann numbers, and with different boundary conditions, is presented to study convergence of the method and the accuracy of the solenoidal and boundary conditions.
A high-performance gas kinetic solver using multi-level parallelization is developed to enable pore-scale simulations of rarefied flows in porous media. The Boltzmann model equation is solved by the discrete velocity method with an iterative scheme.
Electroconvective flow between two infinitely long parallel electrodes is investigated via a multiphysics computational model. The model solves for spatiotemporal flow properties using two-relaxation-time Lattice Boltzmann Method for fluid and charge
Dispersion of low-density rigid particles with complex geometries is ubiquitous in both natural and industrial environments. We show that while explicit methods for coupling the incompressible Navier-Stokes equations and Newtons equations of motion a
A novel hybrid deep neural network architecture is designed to capture the spatial-temporal features of unsteady flows around moving boundaries directly from high-dimensional unsteady flow fields data. The hybrid deep neural network is constituted by
The general synthetic iteration scheme (GSIS) is extended to find the steady-state solution of nonlinear gas kinetic equation, removing the long-standing problems of slow convergence and requirement of ultra-fine grids in near-continuum flows. The ke