ﻻ يوجد ملخص باللغة العربية
We study the problem of bounding path-dependent expectations (within any finite time horizon $d$) over the class of discrete-time martingales whose marginal distributions lie within a prescribed tolerance of a given collection of benchmark marginal distributions. This problem is a relaxation of the martingale optimal transport (MOT) problem and is motivated by applications to super-hedging in financial markets. We show that the empirical version of our relaxed MOT problem can be approximated within $Oleft( n^{-1/2}right)$ error where $n$ is the number of samples of each of the individual marginal distributions (generated independently) and using a suitably constructed finite-dimensional linear programming problem.
While many questions in (robust) finance can be posed in the martingale optimal transport (MOT) framework, others require to consider also non-linear cost functionals. Following the terminology of Gozlan, Roberto, Samson and Tetali this corresponds t
We propose two deep neural network-based methods for solving semi-martingale optimal transport problems. The first method is based on a relaxation/penalization of the terminal constraint, and is solved using deep neural networks. The second method is
A probabilistic method for solving the Monge-Kantorovich mass transport problem on $R^d$ is introduced. A system of empirical measures of independent particles is built in such a way that it obeys a doubly indexed large deviation principle with an op
Specifying a proper input distribution is often a challenging task in simulation modeling. In practice, there may be multiple plausible distributions that can fit the input data reasonably well, especially when the data volume is not large. In this p
Motivated by applications in model-free finance and quantitative risk management, we consider Frechet classes of multivariate distribution functions where additional information on the joint distribution is assumed, while uncertainty in the marginals