ﻻ يوجد ملخص باللغة العربية
We propose two deep neural network-based methods for solving semi-martingale optimal transport problems. The first method is based on a relaxation/penalization of the terminal constraint, and is solved using deep neural networks. The second method is based on the dual formulation of the problem, which we express as a saddle point problem, and is solved using adversarial networks. Both methods are mesh-free and therefore mitigate the curse of dimensionality. We test the performance and accuracy of our methods on several examples up to dimension 10. We also apply the first algorithm to a portfolio optimization problem where the goal is, given an initial wealth distribution, to find an investment strategy leading to a prescribed terminal wealth distribution.
We study the problem of bounding path-dependent expectations (within any finite time horizon $d$) over the class of discrete-time martingales whose marginal distributions lie within a prescribed tolerance of a given collection of benchmark marginal d
While many questions in (robust) finance can be posed in the martingale optimal transport (MOT) framework, others require to consider also non-linear cost functionals. Following the terminology of Gozlan, Roberto, Samson and Tetali this corresponds t
We investigate the problem of optimal transport in the so-called Kantorovich form, i.e. given two Radon measures on two compact sets, we seek an optimal transport plan which is another Radon measure on the product of the sets that has these two measu
We consider a given region $Omega$ where the traffic flows according to two regimes: in a region $C$ we have a low congestion, where in the remaining part $Omegasetminus C$ the congestion is higher. The two congestion functions $H_1$ and $H_2$ are gi
We study a natural Wasserstein gradient flow on manifolds of probability distributions with discrete sample spaces. We derive the Riemannian structure for the probability simplex from the dynamical formulation of the Wasserstein distance on a weighte