ﻻ يوجد ملخص باللغة العربية
There has been enormous progress in the last few years in designing conceivable (though not always practical) neural networks that respect the gauge symmetries -- or coordinate freedom -- of physical law. Some of these frameworks make use of irreducible representations, some make use of higher order tensor objects, and some apply symmetry-enforcing constraints. Different physical laws obey different combinations of fundamental symmetries, but a large fraction (possibly all) of classical physics is equivariant to translation, rotation, reflection (parity), boost (relativity), and permutations. Here we show that it is simple to parameterize universally approximating polynomial functions that are equivariant under these symmetries, or under the Euclidean, Lorentz, and Poincare groups, at any dimensionality $d$. The key observation is that nonlinear O($d$)-equivariant (and related-group-equivariant) functions can be expressed in terms of a lightweight collection of scalars -- scalar products and scalar contractions of the scalar, vector, and tensor inputs. These results demonstrate theoretically that gauge-invariant deep learning models for classical physics with good scaling for large problems are feasible right now.
Reduced models describing the Lagrangian dynamics of the Velocity Gradient Tensor (VGT) in Homogeneous Isotropic Turbulence (HIT) are developed under the Physics-Informed Machine Learning (PIML) framework. We consider VGT at both Kolmogorov scale and
A fundamental result of classical electromagnetism is that Maxwells equations imply that electric charge is locally conserved. Here we show the converse: Local charge conservation implies the local existence of fields satisfying Maxwells equations. T
A clock is, from an information-theoretic perspective, a system that emits information about time. One may therefore ask whether the theory of information imposes any constraints on the maximum precision of clocks. Here we show a quantum-over-classic
Several examples of classical superintegrable systems in two-dimensional spac are shown to possess hidden symmetries leading to their linearization. They are those determined 50 years ago in [Phys. Lett. 13, 354 (1965)], and the more recent Tremblay-
The one-body reduced density matrix $gamma$ plays a fundamental role in describing and predicting quantum features of bosonic systems, such as Bose-Einstein condensation. The recently proposed reduced density matrix functional theory for bosonic grou