ﻻ يوجد ملخص باللغة العربية
Several examples of classical superintegrable systems in two-dimensional spac are shown to possess hidden symmetries leading to their linearization. They are those determined 50 years ago in [Phys. Lett. 13, 354 (1965)], and the more recent Tremblay-Turbiner-Winternitz system [J. Phys. A: Math. Theor. 42, 242001 (2009)]. We conjecture that all classical superintegrable systems in two-dimensional space have hidden symmetries that make them linearizable.
Heisenberg-type higher order symmetries are studied for both classical and quantum mechanical systems separable in cartesian coordinates. A few particular cases of this type of superintegrable systems were already considered in the literature, but he
Quasiclassical approximation in the intrinsic description of the vortex filament dynamics is discussed. Within this approximation the governing equations are given by elliptic system of quasi-linear PDEs of the first order. Dispersionless Da Rios sys
We exploit mappings between quantum and classical systems in order to obtain a class of two-dimensional classical systems with critical properties equivalent to those of the class of one-dimensional quantum systems discussed in a companion paper (J.
It is shown that the symmetry algebra of quantum superintegrable system can be always chosen to be u(N),N being the number of degrees of freedom.
In this letter, we construct new meshy soliton structures by using two concrete (2+1)-dimensional integrable systems. The explicit expressions based on corresponding Cole-Hopf type transformations are obtained. Constraint equation ft+sum_{j=1}^{N} h_