ترغب بنشر مسار تعليمي؟ اضغط هنا

What Can Knowledge Bring to Machine Learning? -- A Survey of Low-shot Learning for Structured Data

228   0   0.0 ( 0 )
 نشر من قبل Yang Hu Dr.
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Supervised machine learning has several drawbacks that make it difficult to use in many situations. Drawbacks include: heavy reliance on massive training data, limited generalizability and poor expressiveness of high-level semantics. Low-shot Learning attempts to address these drawbacks. Low-shot learning allows the model to obtain good predictive power with very little or no training data, where structured knowledge plays a key role as a high-level semantic representation of human. This article will review the fundamental factors of low-shot learning technologies, with a focus on the operation of structured knowledge under different low-shot conditions. We also introduce other techniques relevant to low-shot learning. Finally, we point out the limitations of low-shot learning, the prospects and gaps of industrial applications, and future research directions.



قيم البحث

اقرأ أيضاً

Many few-shot learning approaches have been designed under the meta-learning framework, which learns from a variety of learning tasks and generalizes to new tasks. These meta-learning approaches achieve the expected performance in the scenario where all samples are drawn from the same distributions (i.i.d. observations). However, in real-world applications, few-shot learning paradigm often suffers from data shift, i.e., samples in different tasks, even in the same task, could be drawn from various data distributions. Most existing few-shot learning approaches are not designed with the consideration of data shift, and thus show downgraded performance when data distribution shifts. However, it is non-trivial to address the data shift problem in few-shot learning, due to the limited number of labeled samples in each task. Targeting at addressing this problem, we propose a novel metric-based meta-learning framework to extract task-specific representations and task-shared representations with the help of knowledge graph. The data shift within/between tasks can thus be combated by the combination of task-shared and task-specific representations. The proposed model is evaluated on popular benchmarks and two constructed new challenging datasets. The evaluation results demonstrate its remarkable performance.
What makes a task relatively more or less difficult for a machine compared to a human? Much AI/ML research has focused on expanding the range of tasks that machines can do, with a focus on whether machines can beat humans. Allowing for differences in scale, we can seek interesting (anomalous) pairs of tasks T, T. We define interesting in this way: The harder to learn relation is reversed when comparing human intelligence (HI) to AI. While humans seems to be able to understand problems by formulating rules, ML using neural networks does not rely on constructing rules. We discuss a novel approach where the challenge is to perform well under rules that have been created by human beings. We suggest that this provides a rigorous and precise pathway for understanding the difference between the two kinds of learning. Specifically, we suggest a large and extensible class of learning tasks, formulated as learning under rules. With these tasks, both the AI and HI will be studied with rigor and precision. The immediate goal is to find interesting groundtruth rule pairs. In the long term, the goal will be to understand, in a generalizable way, what distinguishes interesting pairs from ordinary pairs, and to define saliency behind interesting pairs. This may open new ways of thinking about AI, and provide unexpected insights into human learning.
Reinforcement learning algorithms usually assume that all actions are always available to an agent. However, both people and animals understand the general link between the features of their environment and the actions that are feasible. Gibson (1977 ) coined the term affordances to describe the fact that certain states enable an agent to do certain actions, in the context of embodied agents. In this paper, we develop a theory of affordances for agents who learn and plan in Markov Decision Processes. Affordances play a dual role in this case. On one hand, they allow faster planning, by reducing the number of actions available in any given situation. On the other hand, they facilitate more efficient and precise learning of transition models from data, especially when such models require function approximation. We establish these properties through theoretical results as well as illustrative examples. We also propose an approach to learn affordances and use it to estimate transition models that are simpler and generalize better.
Machine learning models have been successfully used in many scientific and engineering fields. However, it remains difficult for a model to simultaneously utilize domain knowledge and experimental observation data. The application of knowledge-based symbolic AI represented by an expert system is limited by the expressive ability of the model, and data-driven connectionism AI represented by neural networks is prone to produce predictions that violate physical mechanisms. In order to fully integrate domain knowledge with observations, and make full use of the prior information and the strong fitting ability of neural networks, this study proposes theory-guided hard constraint projection (HCP). This model converts physical constraints, such as governing equations, into a form that is easy to handle through discretization, and then implements hard constraint optimization through projection. Based on rigorous mathematical proofs, theory-guided HCP can ensure that model predictions strictly conform to physical mechanisms in the constraint patch. The performance of the theory-guided HCP is verified by experiments based on the heterogeneous subsurface flow problem. Due to the application of hard constraints, compared with fully connected neural networks and soft constraint models, such as theory-guided neural networks and physics-informed neural networks, theory-guided HCP requires fewer data, and achieves higher prediction accuracy and stronger robustness to noisy observations.
Cyber Physical Systems (CPS) are characterized by their ability to integrate the physical and information or cyber worlds. Their deployment in critical infrastructure have demonstrated a potential to transform the world. However, harnessing this pote ntial is limited by their critical nature and the far reaching effects of cyber attacks on human, infrastructure and the environment. An attraction for cyber concerns in CPS rises from the process of sending information from sensors to actuators over the wireless communication medium, thereby widening the attack surface. Traditionally, CPS security has been investigated from the perspective of preventing intruders from gaining access to the system using cryptography and other access control techniques. Most research work have therefore focused on the detection of attacks in CPS. However, in a world of increasing adversaries, it is becoming more difficult to totally prevent CPS from adversarial attacks, hence the need to focus on making CPS resilient. Resilient CPS are designed to withstand disruptions and remain functional despite the operation of adversaries. One of the dominant methodologies explored for building resilient CPS is dependent on machine learning (ML) algorithms. However, rising from recent research in adversarial ML, we posit that ML algorithms for securing CPS must themselves be resilient. This paper is therefore aimed at comprehensively surveying the interactions between resilient CPS using ML and resilient ML when applied in CPS. The paper concludes with a number of research trends and promising future research directions. Furthermore, with this paper, readers can have a thorough understanding of recent advances on ML-based security and securing ML for CPS and countermeasures, as well as research trends in this active research area.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا