ﻻ يوجد ملخص باللغة العربية
Many few-shot learning approaches have been designed under the meta-learning framework, which learns from a variety of learning tasks and generalizes to new tasks. These meta-learning approaches achieve the expected performance in the scenario where all samples are drawn from the same distributions (i.i.d. observations). However, in real-world applications, few-shot learning paradigm often suffers from data shift, i.e., samples in different tasks, even in the same task, could be drawn from various data distributions. Most existing few-shot learning approaches are not designed with the consideration of data shift, and thus show downgraded performance when data distribution shifts. However, it is non-trivial to address the data shift problem in few-shot learning, due to the limited number of labeled samples in each task. Targeting at addressing this problem, we propose a novel metric-based meta-learning framework to extract task-specific representations and task-shared representations with the help of knowledge graph. The data shift within/between tasks can thus be combated by the combination of task-shared and task-specific representations. The proposed model is evaluated on popular benchmarks and two constructed new challenging datasets. The evaluation results demonstrate its remarkable performance.
The recent success of graph neural networks has significantly boosted molecular property prediction, advancing activities such as drug discovery. The existing deep neural network methods usually require large training dataset for each property, impai
Deep neural networks (DNNs) are known to perform well when deployed to test distributions that shares high similarity with the training distribution. Feeding DNNs with new data sequentially that were unseen in the training distribution has two major
Zero-shot and few-shot learning aim to improve generalization to unseen concepts, which are promising in many realistic scenarios. Due to the lack of data in unseen domain, relation modeling between seen and unseen domains is vital for knowledge tran
Knowledge graph (KG) representation learning methods have achieved competitive performance in many KG-oriented tasks, among which the best ones are usually based on graph neural networks (GNNs), a powerful family of networks that learns the represent
Graph classification is a highly impactful task that plays a crucial role in a myriad of real-world applications such as molecular property prediction and protein function prediction.Aiming to handle the new classes with limited labeled graphs, few-s