ﻻ يوجد ملخص باللغة العربية
Sub-picosecond x-ray diffraction was used to measure (100)-oriented silicon under laser-driven shock compression, providing an unambiguous atomistic picture of silicon phase transitions. We determine the orientation relationship between the Si-V and Si-I phases, and connect it with the specific deformation mechanism. We provide the first direct evidence of the inelastic deformation of Si under laser-driven shock compression, i.e., the shear stress is relieved by the phase transition without the occurrence of defect-mediated plasticity. We also demonstrate metastability of the high-pressure Si-II phase down to ambient pressure, which could lead to the synthesis of novel functional materials.
We reveal the microscopic self-diffusion process of compact tri-interstitials in silicon using a combination of molecular dynamics and nudged elastic band methods. We find that the compact tri-interstitial moves by a collective displacement, involvin
The development of Low-Gain Avalanche Detectors has opened up the possibility of manufacturing silicon detectors with signal larger than that of traditional sensors. In this paper we explore the timing performance of Low-Gain Avalanche Detectors, and
Strontium cobaltite (SrCoOx) is known as a material showing fast topotactic electrochemical Redox reaction so-called oxygen sponge. Although atomic scale phenomenon of the oxidation of SrCoO2.5 into SrCoO3 is known, the macroscopic phenomenon has not
The mass transfer of interstitial impurities in a crystalline lattice under the influence of the fast-moving deformation disturbance of the type of a shock wave is considered. The velocity of the movement of the disturbance is supposed to be compared
The role of reduced dimensionality and of the surface on electron-phonon (e-ph) coupling in silicon nanowires is determined from first principles. Surface termination and chemistry is found to have a relatively small influence, whereas reduced dimens