ﻻ يوجد ملخص باللغة العربية
We consider thermodynamically consistent autonomous Markov jump processes displaying a macroscopic limit in which the logarithm of the probability distribution is proportional to a scale-independent rate function (i.e., a large deviations principle is satisfied). In order to provide an explicit expression for the probability distribution valid away from equilibrium, we propose a linear response theory performed at the level of the rate function. We show that the first order non-equilibrium contribution to the steady state rate function, $g(x)$, satisfies $u(x)cdot abla g(x) = -beta dot W(x)$ where the vector field $u(x)$ defines the macroscopic deterministic dynamics, and the scalar field $dot W(x)$ equals the rate at which work is performed on the system in a given state $x$. This equation provides a practical way to determine $g(x)$, significantly outperforms standard linear response theory applied at the level of the probability distribution, and approximates the rate function surprisingly well in some far-from-equilibrium conditions. The method applies to a wealth of physical and chemical systems, that we exemplify by two analytically tractable models - an electrical circuit and an autocatalytic chemical reaction network - both undergoing a non-equilibrium transition from a monostable phase to a bistable phase. Our approach can be easily generalized to transient probabilities and non-autonomous dynamics. Moreover, its recursive application generates a virtual flow in the probability space which allows to determine the steady state rate function arbitrarily far from equilibrium.
For diffusive many-particle systems such as the SSEP (symmetric simple exclusion process) or independent particles coupled with reservoirs at the boundaries, we analyze the density fluctuations conditioned on current integrated over a large time. We
We study the dynamics of the statistics of the energy transferred across a point along a quantum chain which is prepared in the inhomogeneous initial state obtained by joining two identical semi-infinite parts thermalized at two different temperature
We extend Kubos Linear Response Theory (LRT) to periodic input signals with arbitrary shapes and obtain exact analytical formulas for the energy dissipated by the system for a variety of signals. These include the square and sawtooth waves, or pulsed
Fluctuation dissipation theorems connect the linear response of a physical system to a perturbation to the steady-state correlation functions. Until now, most of these theorems have been derived for finite-dimensional systems. However, many relevant