ترغب بنشر مسار تعليمي؟ اضغط هنا

KAM-renormalization and Herman rings for 2D maps

281   0   0.0 ( 0 )
 نشر من قبل Michael Yampolsky
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف Michael Yampolsky




اسأل ChatGPT حول البحث

In this note, we extend the renormalization horseshoe we have recently constructed with N. Goncharuk for analytic diffeomorphisms of the circle to their small two-dimensional perturbations. As one consequence, Herman rings with rotation numbers of bounded type survive on a codimension one set of parameters under small two-dimensional perturbations.



قيم البحث

اقرأ أيضاً

200 - Jianlu Zhang 2020
We investigated several global behaviors of the weak KAM solutions $u_c(x,t)$ parametrized by $cin H^1(mathbb T,mathbb R)$. For the suspended Hamiltonian $H(x,p,t)$ of the exact symplectic twist map, we could find a family of weak KAM solutions $u_c( x,t)$ parametrized by $c(sigma)in H^1(mathbb T,mathbb R)$ with $c(sigma)$ continuous and monotonic and [ partial_tu_c+H(x,partial_x u_c+c,t)=alpha(c),quad text{a.e. } (x,t)inmathbb T^2, ] such that sequence of weak KAM solutions ${u_c}_{cin H^1(mathbb T,mathbb R)}$ is $1/2-$Holder continuity of parameter $sigmain mathbb{R}$. Moreover, for each generalized characteristic (no matter regular or singular) solving [ left{ begin{aligned} &dot{x}(s)in text{co} Big[partial_pHBig(x(s),c+D^+u_cbig(x(s),s+tbig),s+tBig)Big], & &x(0)=x_0,quad (x_0,t)inmathbb T^2,& end{aligned} right. ] we evaluate it by a uniquely identified rotational number $omega(c)in H_1(mathbb T,mathbb R)$. This property leads to a certain topological obstruction in the phase space and causes local transitive phenomenon of trajectories. Besides, we discussed this applies to high-dimensional cases.
224 - Mauricio Garay 2012
In the nineties, Michel Herman conjectured the existence of a positive measure set of invariant tori at an elliptic diophantine critical point of a hamiltonian function. I show that KAM versal deformation theory solves positively this conjecture.
76 - Yimin Wang 2021
In this paper, we consider the renormalization operator $mathcal R$ for multimodal maps. We prove the renormalization operator $mathcal R$ is a self-homeomorphism on any totally $mathcal R$-invariant set. As a corollary, we prove the existence of the full renormalization horseshoe for multimodal maps.
151 - Mauricio Garay 2011
In the Nineties, Michel Herman conjectured the existence of a positive measure set of invariant tori at an elliptic diophatine critical point of a hamiltonian function. I construct a formalism for the UV-cutoff and prove a generalised KAM theorem which solves positively the Herman conjecture.
117 - Michael Yampolsky 2019
We develop a renormalization theory for analytic homeomorphisms of the circle with two cubic critical points. We prove a renormalization hyperbolicity theorem. As a basis for the proofs, we develop complex a priori bounds for multi-critical circle maps.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا