ترغب بنشر مسار تعليمي؟ اضغط هنا

Global Behaviors of weak KAM Solutions for exact symplectic Twist Maps

201   0   0.0 ( 0 )
 نشر من قبل Zhang Jianlu
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English
 تأليف Jianlu Zhang




اسأل ChatGPT حول البحث

We investigated several global behaviors of the weak KAM solutions $u_c(x,t)$ parametrized by $cin H^1(mathbb T,mathbb R)$. For the suspended Hamiltonian $H(x,p,t)$ of the exact symplectic twist map, we could find a family of weak KAM solutions $u_c(x,t)$ parametrized by $c(sigma)in H^1(mathbb T,mathbb R)$ with $c(sigma)$ continuous and monotonic and [ partial_tu_c+H(x,partial_x u_c+c,t)=alpha(c),quad text{a.e. } (x,t)inmathbb T^2, ] such that sequence of weak KAM solutions ${u_c}_{cin H^1(mathbb T,mathbb R)}$ is $1/2-$Holder continuity of parameter $sigmain mathbb{R}$. Moreover, for each generalized characteristic (no matter regular or singular) solving [ left{ begin{aligned} &dot{x}(s)in text{co} Big[partial_pHBig(x(s),c+D^+u_cbig(x(s),s+tbig),s+tBig)Big], & &x(0)=x_0,quad (x_0,t)inmathbb T^2,& end{aligned} right. ] we evaluate it by a uniquely identified rotational number $omega(c)in H_1(mathbb T,mathbb R)$. This property leads to a certain topological obstruction in the phase space and causes local transitive phenomenon of trajectories. Besides, we discussed this applies to high-dimensional cases.



قيم البحث

اقرأ أيضاً

For the conformally symplectic system [ left{ begin{aligned} dot{q}&=H_p(q,p),quad(q,p)in T^*mathbb{T}^n dot p&=-H_q(q,p)-lambda p, quad lambda>0 end{aligned} right. ] with a positive definite Hamiltonian, we discuss the variational significance of i nvariant Lagrangian graphs and explain how the presence of the KAM torus dominates the $C^1-$convergence speed of the Lax-Oleinik semigroup.
280 - Michael Yampolsky 2021
In this note, we extend the renormalization horseshoe we have recently constructed with N. Goncharuk for analytic diffeomorphisms of the circle to their small two-dimensional perturbations. As one consequence, Herman rings with rotation numbers of bo unded type survive on a codimension one set of parameters under small two-dimensional perturbations.
281 - Peizheng Yu , Zhihong Xia 2021
Poincares last geometric theorem (Poincare-Birkhoff Theorem) states that any area-preserving twist map of annulus has at least two fixed points. We replace the area-preserving condition with a weaker intersection property, which states that any essen tial simple closed curve intersects its image under $f$ at least at one point. The conclusion is that any such map has at least one fixed point. Besides providing a new proof to Poincares geometric theorem, our result also has some applications to reversible systems.
287 - Xifeng Su , Jianlu Zhang 2021
For a convex, coercive continuous Hamiltonian on a compact closed Riemannian manifold $M$, we construct a unique forward weak KAM solution of [ H(x, d_x u)=c(H) ] by a vanishing discount approach, where $c(H)$ is the Ma~ne critical value. We also dis cuss the dynamical significance of such a special solution.
220 - Lin Wang 2014
In this paper, we show that for exact area-preserving twist maps on annulus, the invariant circles with a given rotation number can be destroyed by arbitrarily small Gevrey-$alpha$ perturbations of the integrable generating function in the $C^r$ topology with $r<4-frac{2}{alpha}$, where $alpha>1$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا