ﻻ يوجد ملخص باللغة العربية
This paper presents a novel deep learning-based approach for automatically vectorizing and synthesizing the clipart of man-made objects. Given a raster clipart image and its corresponding object category (e.g., airplanes), the proposed method sequentially generates new layers, each of which is composed of a new closed path filled with a single color. The final result is obtained by compositing all layers together into a vector clipart image that falls into the target category. The proposed approach is based on an iterative generative model that (i) decides whether to continue synthesizing a new layer and (ii) determines the geometry and appearance of the new layer. We formulated a joint loss function for training our generative model, including the shape similarity, symmetry, and local curve smoothness losses, as well as vector graphics rendering accuracy loss for synthesizing clipart recognizable by humans. We also introduced a collection of man-made object clipart, ClipNet, which is composed of closed-path layers, and two designed preprocessing tasks to clean up and enrich the original raw clipart. To validate the proposed approach, we conducted several experiments and demonstrated its ability to vectorize and synthesize various clipart categories. We envision that our generative model can facilitate efficient and intuitive clipart designs for novice users and graphic designers.
We present an assistive system for clipart design by providing visual scaffolds from the unseen viewpoints. Inspired by the artists creation process, our system constructs the visual scaffold by first synthesizing the reference 3D shape of the input
Recently, deep generative adversarial networks for image generation have advanced rapidly; yet, only a small amount of research has focused on generative models for irregular structures, particularly meshes. Nonetheless, mesh generation and synthesis
Reconstructing 3D human faces in the wild with the 3D Morphable Model (3DMM) has become popular in recent years. While most prior work focuses on estimating more robust and accurate geometry, relatively little attention has been paid to improving the
We introduce ABC-Dataset, a collection of one million Computer-Aided Design (CAD) models for research of geometric deep learning methods and applications. Each model is a collection of explicitly parametrized curves and surfaces, providing ground tru
We propose a novel deep generative model based on causal convolutions for multi-subject motion modeling and synthesis, which is inspired by the success of WaveNet in multi-subject speech synthesis. However, it is nontrivial to adapt WaveNet to handle