ﻻ يوجد ملخص باللغة العربية
We propose a novel deep generative model based on causal convolutions for multi-subject motion modeling and synthesis, which is inspired by the success of WaveNet in multi-subject speech synthesis. However, it is nontrivial to adapt WaveNet to handle high-dimensional and physically constrained motion data. To this end, we add an encoder and a decoder to the WaveNet to translate the motion data into features and back to the predicted motions. We also add 1D convolution layers to take skeleton configuration as an input to model skeleton variations across different subjects. As a result, our network can scale up well to large-scale motion data sets across multiple subjects and support various applications, such as random and controllable motion synthesis, motion denoising, and motion completion, in a unified way. Complex motions, such as punching, kicking and, kicking while punching, are also well handled. Moreover, our network can synthesize motions for novel skeletons not in the training dataset. After fine-tuning the network with a few motion data of the novel skeleton, it is able to capture the personalized style implied in the motion and generate high-quality motions for the skeleton. Thus, it has the potential to be used as a pre-trained network in few-shot learning for motion modeling and synthesis. Experimental results show that our model can effectively handle the variation of skeleton configurations, and it runs fast to synthesize different types of motions on-line. We also perform user studies to verify that the quality of motions generated by our network is superior to the motions of state-of-the-art human motion synthesis methods.
This paper introduces a new generative deep learning network for human motion synthesis and control. Our key idea is to combine recurrent neural networks (RNNs) and adversarial training for human motion modeling. We first describe an efficient method
We propose a novel and flexible roof modeling approach that can be used for constructing planar 3D polygon roof meshes. Our method uses a graph structure to encode roof topology and enforces the roof validity by optimizing a simple but effective plan
3D human dance motion is a cooperative and elegant social movement. Unlike regular simple locomotion, it is challenging to synthesize artistic dance motions due to the irregularity, kinematic complexity and diversity. It requires the synthesized danc
Existing physical cloth simulators suffer from expensive computation and difficulties in tuning mechanical parameters to get desired wrinkling behaviors. Data-driven methods provide an alternative solution. It typically synthesizes cloth animation at
The field of physics-based animation is gaining importance due to the increasing demand for realism in video games and films, and has recently seen wide adoption of data-driven techniques, such as deep reinforcement learning (RL), which learn control