ﻻ يوجد ملخص باللغة العربية
Many real-world systems possess a hierarchical structure where a strategic plan is forwarded and implemented in a top-down manner. Examples include business activities in large companies or policy making for reducing the spread during pandemics. We introduce a novel class of games that we call structured hierarchical games (SHGs) to capture these strategic interactions. In an SHG, each player is represented as a vertex in a multi-layer decision tree and controls a real-valued action vector reacting to orders from its predecessors and influencing its descendants behaviors strategically based on its own subjective utility. SHGs generalize extensive form games as well as Stackelberg games. For general SHGs with (possibly) nonconvex payoffs and high-dimensional action spaces, we propose a new solution concept which we call local subgame perfect equilibrium. By exploiting the hierarchical structure and strategic dependencies in payoffs, we derive a back propagation-style gradient-based algorithm which we call Differential Backward Induction to compute an equilibrium. We theoretically characterize the convergence properties of DBI and empirically demonstrate a large overlap between the stable points reached by DBI and equilibrium solutions. Finally, we demonstrate the effectiveness of our algorithm in finding emph{globally} stable solutions and its scalability for a recently introduced class of SHGs for pandemic policy making.
This article extends the idea of solving parity games by strategy iteration to non-deterministic strategies: In a non-deterministic strategy a player restricts himself to some non-empty subset of possible actions at a given node, instead of limiting
Large-scale screening for potential threats with limited resources and capacity for screening is a problem of interest at airports, seaports, and other ports of entry. Adversaries can observe screening procedures and arrive at a time when there will
Simple stochastic games are two-player zero-sum stochastic games with turn-based moves, perfect information, and reachability winning conditions. We present two new algorithms computing the values of simple stochastic games. Both of them rely on the
Zielonkas classic recursive algorithm for solving parity games is perhaps the simplest among the many existing parity game algorithms. However, its complexity is exponential, while currently the state-of-the-art algorithms have quasipolynomial comple
In a mean-payoff parity game, one of the two players aims both to achieve a qualitative parity objective and to minimize a quantitative long-term average of payoffs (aka. mean payoff). The game is zero-sum and hence the aim of the other player is to