ﻻ يوجد ملخص باللغة العربية
Zielonkas classic recursive algorithm for solving parity games is perhaps the simplest among the many existing parity game algorithms. However, its complexity is exponential, while currently the state-of-the-art algorithms have quasipolynomial complexity. Here, we present a modification of Zielonkas classic algorithm that brings its complexity down to $n^{mathcal{O}left(logleft(1+frac{d}{log n}right)right)}$, for parity games of size $n$ with $d$ priorities, in line with previous quasipolynomial-time solutions.
2.5 player parity games combine the challenges posed by 2.5 player reachability games and the qualitative analysis of parity games. These two types of problems are best approached with different types of algorithms: strategy improvement algorithms fo
The recent breakthrough paper by Calude et al. has given the first algorithm for solving parity games in quasi-polynomial time, where previously the best algorithms were mildly subexponential. We devise an alternative quasi-polynomial time algorithm
The window mechanism was introduced by Chatterjee et al. to reinforce mean-payoff and total-payoff objectives with time bounds in two-player turn-based games on graphs. It has since proved useful in a variety of settings, including parity objectives
Strategic interactions often take place in an environment rife with uncertainty. As a result, the equilibrium of a game is intimately related to the information available to its players. The emph{signaling problem} abstracts the task faced by an info
In a mean-payoff parity game, one of the two players aims both to achieve a qualitative parity objective and to minimize a quantitative long-term average of payoffs (aka. mean payoff). The game is zero-sum and hence the aim of the other player is to