ﻻ يوجد ملخص باللغة العربية
We report the experimental realization of a new kind of optical lattice for ultra-cold atoms where arbitrarily large separation between the sites can be achieved without renouncing to the stability of ordinary lattices. Two collinear lasers, with slightly different commensurate wavelengths and retroreflected on a mirror, generate a superlattice potential with a periodic beat-note profile where the regions with large amplitude modulation provide the effective potential minima for the atoms. To prove the analogy with a standard large spacing optical lattice we study Bloch oscillations of a Bose Einstein condensate with negligible interactions in the presence of a small force. The observed dynamics between sites separated by ten microns for times exceeding one second proves the high stability of the potential. This novel lattice is the ideal candidate for the coherent manipulation of atomic samples at large spatial separations and might find direct application in atom-based technologies like trapped atom interferometers and quantum simulators.
We describe a scheme for probing a gas of ultracold atoms trapped in an optical lattice and moving in the presence of an external potential. The probe is non-destructive and uses the existing lattice fields as the measurement device. Two counter-prop
We report the direct observation and characterization of position-space Bloch oscillations using an ultracold gas in a tilted optical lattice. While Bloch oscillations in momentum space are a common feature of optical lattice experiments, the real-sp
The existence of a paradoxical supersolid phase of matter, possessing the apparently incompatible properties of crystalline order and superfluidity, was predicted 50 years ago. Solid helium was the natural candidate, but there supersolidity has not b
Motivated by a recent experiment by F. Meinert et al, arxiv:1608.08200, we study the dynamics of an impurity moving in the background of a harmonically trapped one-dimensional Bose gas in the hard-core limit. We show that due to the hidden lattice st
Motivated by a recent experiment [J. Catani et al., arXiv:1106.0828v1 preprint, 2011], we study breathing oscillations in the width of a harmonically trapped impurity interacting with a separately trapped Bose gas. We provide an intuitive physical pi