ترغب بنشر مسار تعليمي؟ اضغط هنا

Programmable Interactions and Emergent Geometry in an Atomic Array

116   0   0.0 ( 0 )
 نشر من قبل Eric Cooper
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Interactions govern the flow of information and the formation of correlations in quantum systems, dictating the phases of matter found in nature and the forms of entanglement generated in the laboratory. Typical interactions decay with distance and thus produce a network of connectivity governed by geometry, e.g., by the crystalline structure of a material or the trapping sites of atoms in a quantum simulator. However, many envisioned applications in quantum simulation and computation require richer coupling graphs including nonlocal interactions, which notably feature in mappings of hard optimization problems onto frustrated spin systems and in models of information scrambling in black holes. Here, we report on the realization of programmable nonlocal interactions in an array of atomic ensembles within an optical cavity, where photons carry information between distant atomic spins. By programming the distance-dependence of interactions, we access effective geometries where the dimensionality, topology, and metric are entirely distinct from the physical arrangement of atoms. As examples, we engineer an antiferromagnetic triangular ladder, a Moebius strip with sign-changing interactions, and a treelike geometry inspired by concepts of quantum gravity. The tree graph constitutes a toy model of holographic duality, where the quantum system may be viewed as lying on the boundary of a higher-dimensional geometry that emerges from measured spin correlations. Our work opens broader prospects for simulating frustrated magnets and topological phases, investigating quantum optimization algorithms, and engineering new entangled resource states for sensing and computation.



قيم البحث

اقرأ أيضاً

Emitter ensembles interact collectively with the radiation field. In the case of a one-dimensional array of atoms near a nanofiber, this collective light-matter interaction does not only lead to an increased photon coupling to the guided modes within the fiber, but also to a drastic enhancement of the chirality in the photon emission. We show that near-perfect chirality is already achieved for moderately-sized ensembles, containing 10 to 15 atoms. This is of importance for developing an efficient interface between atoms and waveguide structures with unidirectional coupling, with applications in quantum computing and communication such as the development of non-reciprocal photon devices or quantum information transfer channels.
Currently, the most accurate and stable clocks use optical interrogation of either a single ion or an ensemble of neutral atoms confined in an optical lattice. Here, we demonstrate a new optical clock system based on an array of individually trapped neutral atoms with single-atom readout, merging many of the benefits of ion and lattice clocks as well as creating a bridge to recently developed techniques in quantum simulation and computing with neutral atoms. We evaluate single-site resolved frequency shifts and short-term stability via self-comparison. Atom-by-atom feedback control enables direct experimental estimation of laser noise contributions. Results agree well with an ab initio Monte Carlo simulation that incorporates finite temperature, projective read-out, laser noise, and feedback dynamics. Our approach, based on a tweezer array, also suppresses interaction shifts while retaining a short dead time, all in a comparatively simple experimental setup suited for transportable operation. These results establish the foundations for a third optical clock platform and provide a novel starting point for entanglement-enhanced metrology, quantum clock networks, and applications in quantum computing and communication with individual neutral atoms that require optical clock state control.
We propose an experimental realization of a time crystal using an atomic Bose-Einstein condensate in a high finesse optical cavity pumped with laser light detuned to the blue side of the relevant atomic resonance. By mapping out the dynamical phase d iagram, we identify regions in parameter space showing stable limit cycle dynamics. Since the model describing the system is time-independent, the emergence of a limit cycle phase indicates the breaking of continuous time translation symmetry. Employing a semiclassical analysis to demonstrate the robustness of the limit cycles against perturbations and quantum fluctuations, we establish the emergence of a time crystal.
We study how the radiative properties of a dense ensemble of atoms can be modified when they are placed near or between metallic or dielectric surfaces. If the average separation between the atoms is comparable or smaller than the wavelength of the s cattered photons, the coupling to the radiation field induces long-range coherent interactions based on the interatomic exchange of virtual photons. Moreover, the incoherent scattering of photons back to the electromagnetic field is known to be a many-body process, characterized by the appearance of superradiant and subradiant emission modes. By changing the radiation field properties, in this case by considering a layered medium where the atoms are near metallic or dielectric surfaces, these scattering properties can be dramatically modified. We perform a detailed study of these effects, with focus on experimentally relevant parameter regimes. We finish with a specific application in the context of quantum information storage, where the presence of a nearby surface is shown to increase the storage time of an atomic excitation that is transported across a one-dimensional chain.
The interaction between an atomic ensemble and a light mode in a high-finesse optical cavity can easily reach the strong-coupling regime, where quantum effects dominate. In this regime, the interaction can be used to generate both atom-light and atom -atom entanglement. We analyze the dominant effects on the collective atomic state and the light field, and derive a unified approach that can account for atomic entanglement induced both by measurements on the light field, and by ignoring the state of the light field altogether. We present analytical expressions for the entanglement induced by the interaction, and determine the conditions that maximize the entanglement-induced gain over the standard quantum limit in quantum sensors and atomic clocks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا