ترغب بنشر مسار تعليمي؟ اضغط هنا

Manifestations of metastable criticality in the long-range structure of model water glasses

110   0   0.0 ( 0 )
 نشر من قبل Thomas E. Gartner III
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Much attention has been devoted to waters metastable phase behavior, including polyamorphism (multiple amorphous solid phases), and the hypothesized liquid-liquid transition and associated critical point. However, the possible relationship between these phenomena remains incompletely understood. Using molecular dynamics simulations of the realistic TIP4P/2005 model, we found a striking signature of the liquid-liquid critical point in the structure of water glasses, manifested as a pronounced increase in long-range density fluctuations at pressures proximate to the critical pressure. By contrast, these signatures were absent in glasses of two model systems that lack a critical point. We also characterized the departure from equilibrium upon vitrification via the non-equilibrium index; water-like systems exhibited a strong pressure dependence in this metric, whereas simple liquids did not. These results reflect a surprising relationship between the metastable equilibrium phenomenon of liquid-liquid criticality and the non-equilibrium structure of glassy water, with implications for our understanding of water phase behavior and glass physics. Our calculations suggest a possible experimental route to probing the existence of the liquid-liquid transition in water and other fluids.



قيم البحث

اقرأ أيضاً

We compare the critical behavior of the short-range Ising spin glass with a spin glass with long-range interactions which fall off as a power sigma of the distance. We show that there is a value of sigma of the long-range model for which the critical behavior is very similar to that of the short-range model in four dimensions. We also study a value of sigma for which we find the critical behavior to be compatible with that of the three dimensional model, though we have much less precision than in the four-dimensional case.
It is generally believed that the intrinsic properties of glasses are intimately related to potential energy landscapes (PELs). However, little is known about the PELs of glasses below the glass transition temperature (T_g). Taking advantage of lower potential energy barriers in nano systems, we have systematically investigated the dynamics behavior of two nano glasses, Al43 and Al46. Structure transformation is identified in our pure molecular-dynamics simulation far below T_g, which manifests the existence of metabasins in PELs. Surprisingly, we find that the distribution of potential energies shows a paired-Gaussian and long-tailed distribution at temperatures below and approaching T_g, correspondingly the distribution of the {alpha}-relaxation time exhibits an exponential decay. In contrast to the Gaussian distribution of energy in typical liquids and solids, the paired-Gaussian and long-tailed distribution of potential energies, as well as the exponential distribution of the {alpha}-relaxation time, may be considered as the intrinsic feature of a glass or supercooled liquid. The current results are important not only for checking the reliability of various PEL-based models, but also for exploring the microscopic nature of glasses.
The dynamical arrest of gels is the consequence of a well defined structural phase transition, leading to the formation of a spanning cluster of bonded particles. The dynamical glass transition, instead, is not accompanied by any clear structural sig nature. Nevertheless, both transitions are characterized by the emergence of dynamical heterogeneities. Reviewing recent results from numerical simulations, we discuss the behavior of dynamical heterogeneities in different systems and show that a clear connection with the structure exists in the case of gels. The emerging picture may be also relevant for the more elusive case of glasses. We show, as an example, that the relaxation process of a simple glass-forming model can be related to a reverse percolation transition and discuss further perspective in this direction.
Environmental interaction is a fundamental consideration in any controlled quantum system. While interaction with a dissipative bath can lead to decoherence, it can also provide desirable emergent effects including induced spin-spin correlations. In this paper we show that under quite general conditions, a dissipative bosonic bath can induce a long-range ordered phase, without the inclusion of any additional direct spin-spin couplings. Through a quantum-to-classical mapping and classical Monte Carlo simulation, we investigate the $T=0$ quantum phase transition of an Ising chain embedded in a bosonic bath with Ohmic dissipation. We show that the quantum critical point is continuous, Lorentz invariant with a dynamical critical exponent $z=1.07(9)$, has correlation length exponent $ u=0.80(5)$, and anomalous exponent $eta=1.02(6)$, thus the universality class distinct from the previously studied limiting cases. The implications of our results on experiments in ultracold atomic mixtures and qubit chains in dissipative environments are discussed.
We derive exact results for displacement fields that develop as a response to external pinning forces in two dimensional athermal networks. For a triangular lattice arrangement of particles interacting through soft potentials, we develop a Greens fun ction formalism which we use to derive exact results for displacement fields produced by localized external forces. We show that in the continuum limit the displacement fields decay as $1/r$ at large distances $r$ away from a force dipole. Finally, we extend our formulation to study correlations in the displacement fields produced by the external pinning forces. We show that uncorrelated pinned forces at each vertex give rise to long-range correlations in displacements in athermal systems, with a non-trivial system size dependence. We verify our predictions with numerical simulations of athermal networks in two dimensions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا