ﻻ يوجد ملخص باللغة العربية
We study quantum transport in disordered systems with particle-hole symmetric Hamiltonians. The particle-hole symmetry is spontaneously broken after averaging with respect to disorder, and the resulting massless mode is treated in a random-phase representation of the invariant measure of the symmetry-group. We compute the resulting fermionic functional integral of the average two-particle Greens function in a perturbation theory around the diffusive limit. The results up to two-loop order show that the corrections vanish, indicating that the diffusive quantum transport is robust. On the other hand, the diffusion coefficient depends strongly on the particle-hole symmetric Hamiltonian we choose to study. This reveals a connection between the underlying microscopic theory and the classical long-scale metallic behaviour of these systems.
In this work we probe the dynamics of the particle-hole symmetric many-body localized (MBL) phase. We provide numerical evidence that it can be characterized by an algebraic propagation of both entanglement and charge, unlike in the conventional MBL
We study the role of particle-hole symmetry on the universality class of various quantum phase transitions corresponding to the onset of superfluidity at zero temperature of bosons in a quenched random medium. The functional integral formulation of t
Network models for equilibrium integer quantum Hall (IQH) transitions are described by unitary scattering matrices, that can also be viewed as representing non-equilibrium Floquet systems. The resulting Floquet bands have zero Chern number, and are i
We discuss quantum propagation of dipole excitations in two dimensions. This problem differs from the conventional Anderson localization due to existence of long range hops. We found that the critical wavefunctions of the dipoles always exist which m
We study nonlinear response in quantum spin systems {near infinite-randomness critical points}. Nonlinear dynamical probes, such as two-dimensional (2D) coherent spectroscopy, can diagnose the nearly localized character of excitations in such systems