ﻻ يوجد ملخص باللغة العربية
In lattice quantum field theory studies, parameters defining the lattice theory must be tuned toward criticality to access continuum physics. Commonly used Markov chain Monte Carlo (MCMC) methods suffer from critical slowing down in this limit, restricting the precision of continuum extrapolations. Further difficulties arise when measuring correlation functions of operators widely separated in spacetime: for most correlation functions, an exponentially severe signal-to-noise problem is encountered as the operators are taken to be widely separated. This dissertation details two new techniques to address these issues. First, we define a novel MCMC algorithm based on generative flow-based models. Such models utilize machine learning methods to describe efficient approximate samplers for distributions of interest. Independently drawn flow-based samples are then used as proposals in an asymptotically exact Metropolis-Hastings Markov chain. We address incorporating symmetries of interest, including translational and gauge symmetries. We secondly introduce an approach to deform Monte Carlo estimators based on contour deformations applied to the domain of the path integral. The deformed estimators associated with an observable give equivalent unbiased measurements of that observable, but generically have different variances. We define families of deformed manifolds for lattice gauge theories and introduce methods to efficiently optimize the choice of manifold (the observifold), minimizing the deformed observable variance. Finally, we demonstrate that flow-based MCMC can mitigate critical slowing down and observifolds can exponentially reduce variance in proof-of-principle applications to scalar $phi^4$ theory and $mathrm{U}(1)$ and $mathrm{SU}(N)$ lattice gauge theories.
Machine learning has been a fast growing field of research in several areas dealing with large datasets. We report recent attempts to use Renormalization Group (RG) ideas in the context of machine learning. We examine coarse graining procedures for p
A novel technique using machine learning (ML) to reduce the computational cost of evaluating lattice quantum chromodynamics (QCD) observables is presented. The ML is trained on a subset of background gauge field configurations, called the labeled set
The performance of modern machine learning methods highly depends on their hyperparameter configurations. One simple way of selecting a configuration is to use default settings, often proposed along with the publication and implementation of a new al
Lattice calculations using the framework of effective field theory have been applied to a wide range few-body and many-body systems. One of the challenges of these calculations is to remove systematic errors arising from the nonzero lattice spacing.
Inspired by the duality between gravity and defects in crystals, we study lattice field theory with torsion. The torsion is realized by a line defect of a lattice, namely a dislocation. As the first application, we perform the numerical computation f