ﻻ يوجد ملخص باللغة العربية
Inspired by the duality between gravity and defects in crystals, we study lattice field theory with torsion. The torsion is realized by a line defect of a lattice, namely a dislocation. As the first application, we perform the numerical computation for vector and axial currents induced by a screw dislocation. This current generation is called the chiral torsional effect. We also derive the analytical formula for the chiral torsional effect in the continuum limit.
Lattice calculations using the framework of effective field theory have been applied to a wide range few-body and many-body systems. One of the challenges of these calculations is to remove systematic errors arising from the nonzero lattice spacing.
We argue that generic non-relativistic quantum field theories have a holographic description in terms of Horava gravity. We construct explicit examples of this duality embedded in string theory by starting with relativistic dual pairs and taking a non-relativistic scaling limit.
Using the second law of local thermodynamics and the first-order Palatini formalism, we formulate relativistic spin hydrodynamics for quantum field theories with Dirac fermions, such as QED and QCD, in a torsionful curved background. We work in a reg
Machine learning has been a fast growing field of research in several areas dealing with large datasets. We report recent attempts to use Renormalization Group (RG) ideas in the context of machine learning. We examine coarse graining procedures for p
This notebook tutorial demonstrates a method for sampling Boltzmann distributions of lattice field theories using a class of machine learning models known as normalizing flows. The ideas and approaches proposed in arXiv:1904.12072, arXiv:2002.02428,