ﻻ يوجد ملخص باللغة العربية
Estimates of higher-order contributions for perturbative series in QCD, in view of their asymptotic nature, are delicate, though indispensable for a reliable error assessment in phenomenological applications. In this work, the Adler function and the scalar correlator are investigated, and models for Borel transforms of their perturbative series are constructed, which respect general constraints from the operator product expansion and the renormalisation group. As a novel ingredient, the QCD coupling is employed in the so-called $C$-scheme, which has certain advantages. For the Adler function, previous results obtained directly in the $overline{rm MS}$ scheme are supported. Corresponding results for the scalar correlation function are new. It turns out that the substantially larger perturbative corrections for the scalar correlator in $overline{rm MS}$ are dominantly due to this scheme choice, and can be largely reduced through more appropriate renormalisation schemes, which are easy to realise in the $C$-scheme.
We analyze the properly normalized three-point correlator of two protected scalar operators and one higher spin twist-two operator in N=4 super Yang-Mills, in the limit of large spin j. The relevant structure constant can be extracted from the OPE of
We consider two-point correlators in SU(N) gauge theories on R4 with N=2 supersymmetry and Nf massless hypermultiplets in the fundamental representation. Using localization on S4, we compute the leading perturbative corrections to the two-point funct
Gaussian boson sampling is a promising scheme for demonstrating a quantum computational advantage using photonic states that are accessible in a laboratory and, thus, offer scalable sources of quantum light. In this contribution, we study two-point p
We compute two-point functions of lowest weight operators at the next-to-leading order in the couplings for the beta-deformed N=4 SYM. In particular we focus on the CPO Tr(Phi_1^2) and the operator Tr(Phi_1 Phi_2) not presently listed as BPS. We find
In this work, we calculate leading-order anomalous dimension matrices for dimension-6 four-quark operators which appear in the operator product expansion of flavour non-diagonal and diagonal vector and axial-vector two-point correlation functions. Th