ﻻ يوجد ملخص باللغة العربية
Normalizing flows are invertible neural networks with tractable change-of-volume terms, which allows optimization of their parameters to be efficiently performed via maximum likelihood. However, data of interest is typically assumed to live in some (often unknown) low-dimensional manifold embedded in high-dimensional ambient space. The result is a modelling mismatch since -- by construction -- the invertibility requirement implies high-dimensional support of the learned distribution. Injective flows, mapping from low- to high-dimensional space, aim to fix this discrepancy by learning distributions on manifolds, but the resulting volume-change term becomes more challenging to evaluate. Current approaches either avoid computing this term entirely using various heuristics, or assume the manifold is known beforehand and therefore are not widely applicable. Instead, we propose two methods to tractably calculate the gradient of this term with respect to the parameters of the model, relying on careful use of automatic differentiation and techniques from numerical linear algebra. Both approaches perform end-to-end nonlinear manifold learning and density estimation for data projected onto this manifold. We study the trade-offs between our proposed methods, empirically verify that we outperform approaches ignoring the volume-change term by more accurately learning manifolds and the corresponding distributions on them, and show promising results on out-of-distribution detection.
We introduce manifold-learning flows (M-flows), a new class of generative models that simultaneously learn the data manifold as well as a tractable probability density on that manifold. Combining aspects of normalizing flows, GANs, autoencoders, and
Tractably modelling distributions over manifolds has long been an important goal in the natural sciences. Recent work has focused on developing general machine learning models to learn such distributions. However, for many applications these distribu
Characterizing the appearance of real-world surfaces is a fundamental problem in multidimensional reflectometry, computer vision and computer graphics. For many applications, appearance is sufficiently well characterized by the bidirectional reflecta
A fundamental task in data exploration is to extract simplified low dimensional representations that capture intrinsic geometry in data, especially for faithfully visualizing data in two or three dimensions. Common approaches to this task use kernel
We present a study of kernel MMD two-sample test statistics in the manifold setting, assuming the high-dimensional observations are close to a low-dimensional manifold. We characterize the property of the test (level and power) in relation to the ker