ﻻ يوجد ملخص باللغة العربية
The presence of valley states is a significant obstacle to realizing quantum information technologies in Silicon quantum dots, as leakage into alternate valley states can introduce errors into the computation. We use a perturbative analytical approach to study the dynamics of exchange-coupled quantum dots with valley degrees of freedom. We show that if the valley splitting is large and electrons are not properly initialized to valley eigenstates, then time evolution of the system will lead to spin-valley entanglement. Spin-valley entanglement will also occur if the valley splitting is small and electrons are not initialized to the same valley state. Additionally, we show that for small valley splitting, spin-valley entanglement does not affect measurement probabilities of two-qubit systems; however, systems with more qubits will be affected. This means that two-qubit gate fidelities measured in two-qubit systems may miss the effects of valley degrees of freedom. Our work shows how the existence of valleys may adversely affect multiqubit fidelities even when the system temperature is very low.
The energies of valley-orbit states in silicon quantum dots are determined by an as yet poorly understood interplay between interface roughness, orbital confinement, and electron interactions. Here, we report measurements of one- and two-electron val
A spin qubit in semiconductor quantum dots holds promise for quantum information processing for scalability and long coherence time. An important semiconductor qubit system is a double quantum dot trapping two electrons or holes, whose spin states en
Donor spin in silicon have achieved record values of coherence times and single-qubit gate fidelities. The next stage of development involves demonstrating high-fidelity two-qubit logic gates, where the most natural coupling is the exchange interacti
The Heisenberg exchange interaction between neighboring quantum dots allows precise voltage control over spin dynamics, due to the ability to precisely control the overlap of orbital wavefunctions by gate electrodes. This allows the study of fundamen
Silicon-germanium heterostructures have successfully hosted quantum dot qubits, but the intrinsic near-degeneracy of the two lowest valley states poses an obstacle to high fidelity quantum computing. We present a modification to the Si/SiGe heterostr