ترغب بنشر مسار تعليمي؟ اضغط هنا

Fast spin exchange between two distant quantum dots

393   0   0.0 ( 0 )
 نشر من قبل Ferdinand Kuemmeth
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Heisenberg exchange interaction between neighboring quantum dots allows precise voltage control over spin dynamics, due to the ability to precisely control the overlap of orbital wavefunctions by gate electrodes. This allows the study of fundamental electronic phenomena and finds applications in quantum information processing. Although spin-based quantum circuits based on short-range exchange interactions are possible, the development of scalable, longer-range coupling schemes constitutes a critical challenge within the spin-qubit community. Approaches based on capacitative coupling and cavity-mediated interactions effectively couple spin qubits to the charge degree of freedom, making them susceptible to electrically-induced decoherence. The alternative is to extend the range of the Heisenberg exchange interaction by means of a quantum mediator. Here, we show that a multielectron quantum dot with 50-100 electrons serves as an excellent mediator, preserving speed and coherence of the resulting spin-spin coupling while providing several functionalities that are of practical importance. These include speed (mediated two-qubit rates up to several gigahertz), distance (of order of a micrometer), voltage control, possibility of sweet spot operation (reducing susceptibility to charge noise), and reversal of the interaction sign (useful for dynamical decoupling from noise).



قيم البحث

اقرأ أيضاً

Scalable architectures for quantum information technologies require to selectively couple long-distance qubits while suppressing environmental noise and cross-talk. In semiconductor materials, the coherent coupling of a single spin on a quantum dot t o a cavity hosting fermionic modes offers a new solution to this technological challenge. Here, we demonstrate coherent coupling between two spatially separated quantum dots using an electronic cavity design that takes advantage of whispering-gallery modes in a two-dimensional electron gas. The cavity-mediated long-distance coupling effectively minimizes undesirable direct cross-talk between the dots and defines a scalable architecture for all-electronic semiconductor-based quantum information processing.
The presence of valley states is a significant obstacle to realizing quantum information technologies in Silicon quantum dots, as leakage into alternate valley states can introduce errors into the computation. We use a perturbative analytical approac h to study the dynamics of exchange-coupled quantum dots with valley degrees of freedom. We show that if the valley splitting is large and electrons are not properly initialized to valley eigenstates, then time evolution of the system will lead to spin-valley entanglement. Spin-valley entanglement will also occur if the valley splitting is small and electrons are not initialized to the same valley state. Additionally, we show that for small valley splitting, spin-valley entanglement does not affect measurement probabilities of two-qubit systems; however, systems with more qubits will be affected. This means that two-qubit gate fidelities measured in two-qubit systems may miss the effects of valley degrees of freedom. Our work shows how the existence of valleys may adversely affect multiqubit fidelities even when the system temperature is very low.
We investigate a hybrid quantum system consisting of spatially separated resonant exchange qubits, defined in three-electron semiconductor triple quantum dots, that are coupled via a superconducting transmission line resonator. Drawing on methods fro m circuit quantum electrodynamics and Hartmann-Hahn double resonance techniques, we analyze three specific approaches for implementing resonator-mediated two-qubit entangling gates in both dispersive and resonant regimes of interaction. We calculate entangling gate fidelities as well as the rate of relaxation via phonons for resonant exchange qubits in silicon triple dots and show that such an implementation is particularly well-suited to achieving the strong coupling regime. Our approach combines the favorable coherence properties of encoded spin qubits in silicon with the rapid and robust long-range entanglement provided by circuit QED systems.
Single-electron circuits of the future, consisting of a network of quantum dots, will require a mechanism to transport electrons from one functional part to another. For example, in a quantum computer[1] decoherence and circuit complexity can be redu ced by separating qubit manipulation from measurement and by providing some means to transport electrons from one to the other.[2] Tunnelling between neighbouring dots has been demonstrated[3, 4] with great control, and the manipulation of electrons in single and double-dot systems is advancing rapidly.[5-8] For distances greater than a few hundred nanometres neither free propagation nor tunnelling are viable whilst maintaining confinement of single electrons. Here we show how a single electron may be captured in a surface acoustic wave minimum and transferred from one quantum dot to a second unoccupied dot along a long empty channel. The transfer direction may be reversed and the same electron moved back and forth over sixty times without error, a cumulative distance of 0.25 mm. Such on-chip transfer extends communication between quantum dots to a range that may allow the integration of discrete quantum information-processing components and devices.
102 - Peihao Huang 2021
A spin qubit in semiconductor quantum dots holds promise for quantum information processing for scalability and long coherence time. An important semiconductor qubit system is a double quantum dot trapping two electrons or holes, whose spin states en code either a singlet-triplet qubit or two single-spin qubits coupled by exchange interaction. In this article, we report progress on spin dephasing of two exchange-coupled spins in a double quantum dot. We first discuss the schemes of two-qubit gates and qubit encodings in gate-defined quantum dots or donor atoms based on the exchange interaction. Then, we report the progress on spin dephasing of a singlet-triplet qubit or a two-qubit gate. The methods of suppressing spin dephasing are further discussed. The understanding of spin dephasing may provide insights into the realization of high-fidelity quantum gates for spin-based quantum computing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا