ﻻ يوجد ملخص باللغة العربية
We show that, under finitely many ergodicity assumptions, any multicorrelation sequence defined by invertible measure preserving $mathbb{Z}^d$-actions with multivariable integer polynomial iterates is the sum of a nilsequence and a null sequence, extending a recent result of the second author. To this end, we develop a new seminorm bound estimate for multiple averages by improving the results in a previous work of the first, third and fourth authors. We also use this approach to obtain new criteria for joint ergodicity of multiple averages with multivariable polynomial iterates on $mathbb{Z}^{d}$-systems.
We study multicorrelation sequences arising from systems with commuting transformations. Our main result is a refinement of a decomposition result of Frantzikinakis and it states that any multicorrelation sequences for commuting transformations can b
We study mean convergence of multiple ergodic averages, where the iterates arise from smooth functions of polynomial growth that belong to a Hardy field. Our results include all logarithmico-exponential functions of polynomial growth, such as the fun
Exploiting the recent work of Tao and Ziegler on the concatenation theorem on factors, we find explicit characteristic factors for multiple averages along polynomials on systems with commuting transformations, and use them to study the criteria of jo
We determine the Krieger type of nonsingular Bernoulli actions $G curvearrowright prod_{g in G} ({0,1},mu_g)$. When $G$ is abelian, we do this for arbitrary marginal measures $mu_g$. We prove in particular that the action is never of type II$_infty$
We define interacting particle systems on configurations of the integer lattice (with values in some finite alphabet) by the superimposition of two dynamics: a substitution process with finite range rates, and a circular permutation mechanism(called