ﻻ يوجد ملخص باللغة العربية
We study multicorrelation sequences arising from systems with commuting transformations. Our main result is a refinement of a decomposition result of Frantzikinakis and it states that any multicorrelation sequences for commuting transformations can be decomposed, for every $epsilon>0$, as the sum of a nilsequence $phi(n)$ and a sequence $omega(n)$ satisfying $lim_{Ntoinfty}frac{1}{N}sum_{n=1}^N |omega(n)|<epsilon$ and $lim_{Ntoinfty}frac{1}{|mathbb{P}cap [N]|}sum_{pin mathbb{P}cap [N]} |omega(p)|<epsilon$.
We show that, under finitely many ergodicity assumptions, any multicorrelation sequence defined by invertible measure preserving $mathbb{Z}^d$-actions with multivariable integer polynomial iterates is the sum of a nilsequence and a null sequence, ext
By establishing Multiplicative Ergodic Theorem for commutative transformations on a separable infinite dimensional Hilbert space, in this paper, we investigate Pesins entropy formula and SRB measures of a finitely generated random transformations on
We establish new recurrence and multiple recurrence results for a rather large family $mathcal{F}$ of non-polynomial functions which includes tempered functions defined in [11], as well as functions from a Hardy field with the property that for some
We use Maynards methods to show that there are bounded gaps between primes in the sequence ${lfloor nalpharfloor}$, where $alpha$ is an irrational number of finite type. In addition, given a superlinear function $f$ satisfying some properties describ
Consider averages along the prime integers $ mathbb P $ given by begin{equation*} mathcal{A}_N f (x) = N ^{-1} sum_{ p in mathbb P ;:; pleq N} (log p) f (x-p). end{equation*} These averages satisfy a uniform scale-free $ ell ^{p}$-improving estimate.