ترغب بنشر مسار تعليمي؟ اضغط هنا

A decomposition of multicorrelation sequences for commuting transformations along primes

136   0   0.0 ( 0 )
 نشر من قبل Florian Karl Richter
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study multicorrelation sequences arising from systems with commuting transformations. Our main result is a refinement of a decomposition result of Frantzikinakis and it states that any multicorrelation sequences for commuting transformations can be decomposed, for every $epsilon>0$, as the sum of a nilsequence $phi(n)$ and a sequence $omega(n)$ satisfying $lim_{Ntoinfty}frac{1}{N}sum_{n=1}^N |omega(n)|<epsilon$ and $lim_{Ntoinfty}frac{1}{|mathbb{P}cap [N]|}sum_{pin mathbb{P}cap [N]} |omega(p)|<epsilon$.



قيم البحث

اقرأ أيضاً

We show that, under finitely many ergodicity assumptions, any multicorrelation sequence defined by invertible measure preserving $mathbb{Z}^d$-actions with multivariable integer polynomial iterates is the sum of a nilsequence and a null sequence, ext ending a recent result of the second author. To this end, we develop a new seminorm bound estimate for multiple averages by improving the results in a previous work of the first, third and fourth authors. We also use this approach to obtain new criteria for joint ergodicity of multiple averages with multivariable polynomial iterates on $mathbb{Z}^{d}$-systems.
122 - Zhiming Li , Yujun Zhu 2020
By establishing Multiplicative Ergodic Theorem for commutative transformations on a separable infinite dimensional Hilbert space, in this paper, we investigate Pesins entropy formula and SRB measures of a finitely generated random transformations on such space via its commuting generators. Moreover, as an application, we give a formula of Friedlands entropy for certain $C^{2}$ $mathbb{N}^2$-actions.
We establish new recurrence and multiple recurrence results for a rather large family $mathcal{F}$ of non-polynomial functions which includes tempered functions defined in [11], as well as functions from a Hardy field with the property that for some $ellin mathbb{N}cup{0}$, $lim_{xtoinfty }f^{(ell)}(x)=pminfty$ and $lim_{xtoinfty }f^{(ell+1)}(x)=0$. Among other things, we show that for any $finmathcal{F}$, any invertible probability measure preserving system $(X,mathcal{B},mu,T)$, any $Ainmathcal{B}$ with $mu(A)>0$, and any $epsilon>0$, the sets of returns $$ R_{epsilon, A}= big{ninmathbb{N}:mu(Acap T^{-lfloor f(n)rfloor}A)>mu^2(A)-epsilonbig} $$ and $$ R^{(k)}_{A}= big{ ninmathbb{N}: mubig(Acap T^{lfloor f(n)rfloor}Acap T^{lfloor f(n+1)rfloor}Acapcdotscap T^{lfloor f(n+k)rfloor}Abig)>0big} $$ possess somewhat unexpected properties of largeness; in particular, they are thick, i.e., contain arbitrarily long intervals.
153 - Lynn Chua , Soohyun Park , 2014
We use Maynards methods to show that there are bounded gaps between primes in the sequence ${lfloor nalpharfloor}$, where $alpha$ is an irrational number of finite type. In addition, given a superlinear function $f$ satisfying some properties describ ed by Leitmann, we show that for all $m$ there are infinitely many bounded intervals containing $m$ primes and at least one integer of the form $lfloor f(q)rfloor$ with $q$ a positive integer.
Consider averages along the prime integers $ mathbb P $ given by begin{equation*} mathcal{A}_N f (x) = N ^{-1} sum_{ p in mathbb P ;:; pleq N} (log p) f (x-p). end{equation*} These averages satisfy a uniform scale-free $ ell ^{p}$-improving estimate. For all $ 1< p < 2$, there is a constant $ C_p$ so that for all integer $ N$ and functions $ f$ supported on $ [0,N]$, there holds begin{equation*} N ^{-1/p }lVert mathcal{A}_N frVert_{ell^{p}} leq C_p N ^{- 1/p} lVert frVert_{ell^p}. end{equation*} The maximal function $ mathcal{A}^{ast} f =sup_{N} lvert mathcal{A}_N f rvert$ satisfies $ (p,p)$ sparse bounds for all $ 1< p < 2$. The latter are the natural variants of the scale-free bounds. As a corollary, $ mathcal{A}^{ast} $ is bounded on $ ell ^{p} (w)$, for all weights $ w$ in the Muckenhoupt $A_p$ class. No prior weighted inequalities for $ mathcal{A}^{ast} $ were known.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا