ترغب بنشر مسار تعليمي؟ اضغط هنا

An inverse random source problem for the time-space fractional diffusion equation driven by fractional Brownian motion

96   0   0.0 ( 0 )
 نشر من قبل Weihua Deng Professor
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the inverse random source problem for the time-space fractional diffusion equation driven by fractional Brownian motion with Hurst index $Hin(0,1)$. With the aid of a novel estimate, by using the operator approach we propose regularity analyses for the direct problem. Then we provide a reconstruction scheme for the source terms $f$ and $g$ up to the sign. Next, combining the properties of Mittag-Leffler function, the complete uniqueness and instability analyses are provided. Its worth mentioning that all the analyses are unified for $Hin(0,1)$.



قيم البحث

اقرأ أيضاً

83 - Daxin Nie , Weihua Deng 2021
In this paper, we consider the strong convergence of the time-space fractional diffusion equation driven by fractional Gaussion noise with Hurst index $Hin(frac{1}{2},1)$. A sharp regularity estimate of the mild solution and the numerical scheme cons tructed by finite element method for integral fractional Laplacian and backward Euler convolution quadrature for Riemann-Liouville time fractional derivative are proposed. With the help of inverse Laplace transform and fractional Ritz projection, we obtain the accurate error estimates in time and space. Finally, our theoretical results are accompanied by numerical experiments.
We study distribution dependent stochastic differential equations with irregular, possibly distributional drift, driven by an additive fractional Brownian motion of Hurst parameter $Hin (0,1)$. We establish strong well-posedness under a variety of as sumptions on the drift; these include the choice $$B(cdot,mu) = fastmu(cdot) + g(cdot),quad f,gin B^alpha_{infty,infty}, quad alpha>1-1/2H,$$ thus extending the results by Catellier and Gubinelli [9] to the distribution dependent case. The proofs rely on some novel stability estimates for singular SDEs driven by fractional Brownian motion and the use of Wasserstein distances.
We construct a $K$-rough path above either a space-time or a spatial fractional Brownian motion, in any space dimension $d$. This allows us to provide an interpretation and a unique solution for the corresponding parabolic Anderson model, understood in the renormalized sense. We also consider the case of a spatial fractional noise.
Zolotarev proved a duality result that relates stable densities with different indices. In this paper, we show how Zolotarev duality leads to some interesting results on fractional diffusion. Fractional diffusion equations employ fractional derivativ es in place of the usual integer order derivatives. They govern scaling limits of random walk models, with power law jumps leading to fractional derivatives in space, and power law waiting times between the jumps leading to fractional derivatives in time. The limit process is a stable Levy motion that models the jumps, subordinated to an inverse stable process that models the waiting times. Using duality, we relate the density of a spectrally negative stable process with index $1<alpha<2$ to the density of the hitting time of a stable subordinator with index $1/alpha$, and thereby unify some recent results in the literature. These results also provide a concrete interpretation of Zolotarev duality in terms of the fractional diffusion model.
93 - Shubin Fu , Zhidong Zhang 2020
In this work, an inverse problem in the fractional diffusion equation with random source is considered. The measurements used are the statistical moments of the realizations of single point data $u(x_0,t,omega).$ We build the representation of the so lution $u$ in integral sense, then prove that the unknowns can be bounded by the moments theoretically. For the numerical reconstruction, we establish an iterative algorithm with regularized Levenberg-Marquardt type and some numerical results generated from this algorithm are displayed. For the case of highly heterogeneous media, the Generalized Multiscale finite element method (GMsFEM) will be employed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا