ﻻ يوجد ملخص باللغة العربية
We experimentally study the dynamics of weakly interacting Bose-Einstein condensates of cesium atoms in a 1D optical lattice with a periodic driving force. After a sudden start of the driving we observe the formation of stable wave packets at the center of the first Brillouin zone (BZ) in momentum space, and we interpret these as Floquet solitons in periodically driven systems. The wave packets become unstable when we add a trapping potential along the lattice direction leading to a redistribution of atoms within the BZ. The concept of a negative effective mass and the resulting changes to the interaction strength and effective trapping potential are used to explain the stability and the time evolution of the wave packets. We expect that similar states of matter waves exist for discrete breathers and other types of lattice solitons in periodically driven systems.
We study the quantum dynamics of Bose-Einstein condensates when the scattering length is modulated periodically or quasi-periodically in time within the Bogoliubov framework. For the periodically driven case, we consider two protocols where the modul
We investigate ultracold and dilute bosonic atoms under strong transverse harmonic confinement by using a 1D modified Gross-Pitaevskii equation (1D MGPE), which accounts for the energy dependence of the two-body scattering amplitude within an effecti
Quantum systems can show qualitatively new forms of behavior when they are driven by fast time-periodic modulations. In the limit of large driving frequency, the long-time dynamics of such systems can often be described by a time-independent effectiv
We derive a systematic high-frequency expansion for the effective Hamiltonian and the micromotion operator of periodically driven quantum systems. Our approach is based on the block diagonalization of the quasienergy operator in the extended Floquet
We investigate a Bose Einstein condensate held in a 1D optical lattice whose phase undergoes a fast oscillation using a statistical analysis. The averaged potential experienced by the atoms boils down to a periodic potential having the same spatial p