ﻻ يوجد ملخص باللغة العربية
Lithium is an important element for the understanding of ultracool dwarfs because it is lost to fusion at masses above $sim 68, M_{rm J}$. Hence, the presence or absence of atomic Li has served as an indicator of the nearby H-burning boundary at about $75,M_{rm J}$ between brown-dwarfs and very low-mass stars. Historically the Lithium test, a search for the presence and strength of the Li line at 670.8 nm, has been a marker if an object has a substellar mass with stellar-like spectral energy distribution (e.g., a late-type M dwarf). While the Li test could in principle also be used to distinguish masses of later-type L-T dwarfs, Li is predominantly no longer found as an atomic gas, but rather a molecular species such as LiH, LiF, LiOH, and LiCl in their cooler atmospheres. L- and T-type brown dwarfs are also quite faint at 670 nm and thus challenging targets for high resolution spectroscopy. But only recently have experimental molecular line lists become available for the molecular Li species, allowing molecular Li mass discrimination. In this study, we generated the latest opacity of each of these Li-bearing molecules and performed thermochemical equilibrium atmospheric composition calculation of the abundance of these molecules. Finally, we computed thermal emission spectra for a series of radiative-convective equilibrium models of cloudy and cloudless brown dwarf atmospheres (with $T_{rm eff}=$ 500--2400~K, and $log g$=4.0, 4.5, 5.0) to understand where the presence or absence of atmospheric lithium-bearing species is most easily detected as a function of brown dwarf mass and age. After atomic Li, the best spectral signatures were found to be LiF at $10.5-12.5$~micron and LiCl at $14.5-18.5$ $micron$. LiH also shows a narrow feature at $sim 9.38$ $micron$.
We report the discovery of two intermediate-mass brown dwarfs (BDs), TOI-569b and TOI-1406b, from NASAs Transiting Exoplanet Survey Satellite mission. TOI-569b has an orbital period of $P = 6.55604 pm 0.00016$ days, a mass of $M_b = 64.1 pm 1.9 M_J$,
The number of low-mass brown dwarfs and even free floating planetary mass objects in young nearby star-forming regions and associations is continuously increasing, offering the possibility to study the low-mass end of the IMF in greater detail. In th
The physical properties of brown dwarf companions found to orbit nearby, solar-type stars can be benchmarked against independent measures of their mass, age, chemical composition, and other parameters, offering insights into the evolution of substell
We present the initial results from a survey for planetary-mass brown dwarfs in the Taurus star-forming region. We have identified brown dwarf candidates in Taurus using proper motions and photometry from several ground- and space-based facilities. T
We present new 890 $mu m$ continuum ALMA observations of 5 brown dwarfs (BDs) with infrared excess in Lupus I and III -- which, in combination with 4 BDs previously observed, allowed us to study the mm properties of the full known BD disk population