ﻻ يوجد ملخص باللغة العربية
Driver drowsiness is one of main factors leading to road fatalities and hazards in the transportation industry. Electroencephalography (EEG) has been considered as one of the best physiological signals to detect drivers drowsy states, since it directly measures neurophysiological activities in the brain. However, designing a calibration-free system for driver drowsiness detection with EEG is still a challenging task, as EEG suffers from serious mental and physical drifts across different subjects. In this paper, we propose a compact and interpretable Convolutional Neural Network (CNN) to discover shared EEG features across different subjects for driver drowsiness detection. We incorporate the Global Average Pooling (GAP) layer in the model structure, allowing the Class Activation Map (CAM) method to be used for localizing regions of the input signal that contribute most for classification. Results show that the proposed model can achieve an average accuracy of 73.22% on 11 subjects for 2-class cross-subject EEG signal classification, which is higher than conventional machine learning methods and other state-of-art deep learning methods. It is revealed by the visualization technique that the model has learned biologically explainable features, e.g., Alpha spindles and Theta burst, as evidence for the drowsy state. It is also interesting to see that the model uses artifacts that usually dominate the wakeful EEG, e.g., muscle artifacts and sensor drifts, to recognize the alert state. The proposed model illustrates a potential direction to use CNN models as a powerful tool to discover shared features related to different mental states across different subjects from EEG signals.
In the context of electroencephalogram (EEG)-based driver drowsiness recognition, it is still a challenging task to design a calibration-free system, since there exists a significant variability of EEG signals among different subjects and recording s
The auditory attention decoding (AAD) approach was proposed to determine the identity of the attended talker in a multi-talker scenario by analyzing electroencephalography (EEG) data. Although the linear model-based method has been widely used in AAD
Recent behavioral and electroencephalograph (EEG) studies have defined ways that auditory spatial attention can be allocated over large regions of space. As with most experimental studies, behavior EEG was averaged over 10s of minutes because identif
We present a model for predicting electrocardiogram (ECG) abnormalities in short-duration 12-lead ECG signals which outperformed medical doctors on the 4th year of their cardiology residency. Such exams can provide a full evaluation of heart activity
Background: In cognitive neuroscience the potential of Deep Neural Networks (DNNs) for solving complex classification tasks is yet to be fully exploited. The most limiting factor is that DNNs as notorious black boxes do not provide insight into neuro